Датчик положения объекта

Изобретение относится к области измерения параметров движения объектов и может быть применено для определения положения и скорости объекта, движущегося относительно основания. Датчик положения объекта, движущегося относительно основания, состоит из источника магнитного поля, установленного в заданном месте основания, и преобразователя магнитного поля, расположенного на объекте со стороны основания. Источник магнитного поля может быть выполнен в виде постоянного магнита или электромагнита постоянного тока с намагниченностью, перпендикулярной направлению движения объекта, а преобразователь магнитного поля - в виде охватывающего объект кольцевого электрического контура, плоскость которого перпендикулярна направлению движения объекта. При этом датчик может быть дополнительно снабжен дифференцирующим устройством, вход которого соединен с выходом кольцевого электрического контура. Преобразователь магнитного поля может быть выполнен в виде измерителя магнитного поля, а источник магнитного поля - в виде кольцевого постоянного магнита, охватывающего траекторию движения объекта и который может быть выполнен с радиальной намагниченностью и сплошным или в виде отдельных сегментов, расположенных по окружности, причем плоскость кольцевого магнита перпендикулярна направлению движения объекта. Изобретение направлено на расширение функциональных возможностей датчика и повышение точности определения положения движущегося объекта. 4 з.п. ф-лы, 6 ил.

 

Изобретение относится к области измерения параметров движения объектов и может быть применено для определения положения и скорости объекта, движущегося относительно основания.

Известен датчик положения быстродвижущихся объектов, выполненных из магнитного материала [1], содержащий источник магнитного поля в виде стержневого постоянного магнита и преобразователь магнитного поля в виде индуктивной катушки с ферромагнитным сердечником, установленные на неподвижном основании со стороны движущегося объекта. При прохождении магнитного объекта вблизи датчика потокосцепление (магнитный поток) в преобразователе магнитного поля изменяется (сначала увеличивается, затем уменьшается), при этом в катушке индуктивности появляется э.д.с., по которой определяют положение объекта относительно неподвижного основания.

Недостатками известного устройства являются: ограниченная область применения из-за невозможности определения положения объектов аппаратурой, расположенной на самом объекте («бортовой» аппаратурой); низкая точность (или невозможность) определения положения объектов при наличии неконтролируемого их вращения в процессе движения вокруг своей оси, параллельной направлению движения, а также низкая точность определения положения объектов, движущихся с малыми скоростями.

Наиболее близким техническим решением (прототипом) является датчик положения объекта (снаряда) [2], содержащий источник магнитного поля в виде кольцевого постоянного магнита, охватывающего объект и имеющего намагниченность вдоль направления движения объекта, и преобразователь магнитного поля в виде катушки индуктивности, установленный на неподвижном основании (стволе) со стороны движущегося объекта. Плоскость кольцевого магнита и ось катушки индуктивности перпендикулярны направлению движения объекта. При прохождении объекта вблизи датчика потокосцепление (магнитный поток) в преобразователе магнитного поля изменяется, при этом в катушке индуктивности появляется э.д.с., по которой определяют положение объекта относительно неподвижного основания.

Недостатками устройства-прототипа являются: ограниченные функциональные возможности датчика из-за невозможности определения положения объектов аппаратурой, расположенной на самом объекте («бортовой» аппаратурой); низкая точность определения положения движущегося объекта в условиях непостоянства расстояния (зазора) между объектом и основанием (при изменении расстояния между преобразователем в виде катушки индуктивности и магнитом, имеющим намагниченность, перпендикулярную оси катушки, изменяется форма сигнала: при увеличении зазора точки перехода э.д.с. катушки через нуль удаляются от точки, соответствующей пиковому значению э.д.с.); низкая точность определения положения объекта при малых скоростях его движения из-за снижения чувствительности преобразователя магнитного поля, выполненного на основе катушки индуктивности.

Предлагаемое изобретение направлено на расширение функциональных возможностей датчика и повышение точности определения положения движущегося объекта.

Указанный технический результат достигается тем, что в датчике положения объекта, движущегося относительно основания, содержащем источник магнитного поля и преобразователь магнитного поля, согласно изобретению источник магнитного поля установлен в заданном месте основания, а преобразователь магнитного поля расположен на объекте со стороны основания.

Источник магнитного поля может быть выполнен в виде постоянного магнита или электромагнита постоянного тока с намагниченностью, перпендикулярной направлению движения объекта, а преобразователь магнитного поля - в виде охватывающего объект кольцевого электрического контура, плоскость которого перпендикулярна направлению движения объекта. При этом датчик может быть дополнительно снабжен дифференцирующим устройством, вход которого соединен с выходом кольцевого электрического контура. Преобразователь магнитного поля может быть выполнен в виде измерителя магнитного поля, а источник магнитного поля - в виде кольцевого постоянного магнита, охватывающего траекторию движения объекта, причем плоскость кольцевого магнита перпендикулярна направлению движения объекта. Кольцевой магнит может быть выполнен с радиальной намагниченностью. Он может быть выполнен также сплошным или в виде отдельных сегментов, расположенных по окружности.

Расположение источника магнитного поля в заданном месте основания, а преобразователя магнитного поля на объекте со стороны основания дает возможность определения положения объектов «бортовой» аппаратурой.

Выполнение источника магнитного поля в виде постоянного магнита или электромагнита постоянного тока с намагниченностью, перпендикулярной направлению движения объекта, позволяет расширить функциональные возможности датчика за счет определения положения объектов, перемещающихся относительно основания, имеющего внутренние (обращенные к объекту) поверхности из магнитных материалов. Кроме того, это позволяет увеличить точность определения положения движущегося объекта при непостоянстве зазора между объектом и основанием за счет более четкой фиксации момента нахождения центра магнита напротив центра преобразователя магнитного поля.

Выполнение преобразователя магнитного поля в виде кольцевого охватывающего объект электрического контура, плоскость которого перпендикулярна направлению движения объекта, позволяет расширить функциональные возможности датчика за счет определения положения объектов, имеющих неконтролируемое вращение вокруг оси, параллельной направлению движения.

Выполнение преобразователя магнитного поля в виде измерителя магнитного поля повышает точность определения положения объектов, движущихся с малыми скоростями, за счет непосредственного измерения параметров магнитного поля постоянного магнита независимо от скорости перемещения источника поля.

Выполнение источника магнитного поля в виде кольцевого постоянного магнита, охватывающего траекторию движения объекта, с плоскостью, перпендикулярной направлению движения объекта, дает возможность упростить преобразователь (измеритель) магнитного поля и уменьшить его габариты, а выполнение кольцевого магнита с радиальной намагниченностью позволяет увеличить точность определения положения движущегося объекта при непостоянстве зазора между объектом и основанием за счет более четкой фиксации момента нахождения центра преобразователя магнитного поля напротив центра магнита.

Выполнение кольцевого магнита в виде отдельных сегментов, расположенных по окружности, упрощает технологию изготовления кольцевого магнита.

Изобретение поясняется чертежами, где на фиг.1 показана общая схема датчика положения движущегося объекта; на фиг.2 - форма сигнала (зависимость э.д.с. е от времени t) преобразователя магнитного поля; на фиг.3 - датчик с измерителем магнитного поля; на фиг.4 - форма сигнала измерителя магнитного поля, когда его ось чувствительности перпендикулярна направлению движения объекта; на фиг.5 - схема датчика положения движущегося объекта с возможным вращением его вокруг оси, параллельной направлению движения; на фиг.6 - схема датчика положения движущегося объекта с источником магнитного поля в виде кольцевого магнита.

Датчик положения объекта 1 (фиг.1), движущегося относительно основания 2 (направление движения объекта показано стрелкой), содержит источник 3 магнитного поля в виде постоянного магнита (или электромагнита постоянного тока), установленного на основании 2 со стороны объекта 1 и имеющего намагниченность, перпендикулярную направлению движения объекта (направление намагниченности магнитов на фигурах показано стрелкой). На объекте 1 установлен преобразователь 4 магнитного поля, например, в виде катушки индуктивности, ось которой перпендикулярна направлению движения объекта. Преобразователь магнитного поля может быть выполнен в виде измерителя 5 магнитного поля (фиг.3), например в виде датчика Холла, ось чувствительности которого параллельна направлению движения объекта. Преобразователь может быть выполнен также в виде кольцевого охватывающего объект электрического контура 6 (фиг.5), плоскость которого перпендикулярна направлению движения объекта. Датчик может быть снабжен дополнительно одним или несколькими источниками 7 магнитного поля, расположенными в основании 2 по окружности, охватывающей траекторию движения объекта, в плоскости расположения источника 3. При этом устройство может быть дополнительно снабжено дифференцирующим устройством (на фигурах не показано), вход которого соединен с выходом кольцевого электрического контура.

Источник магнитного поля может быть выполнен в виде кольцевого постоянного магнита 8 (фиг.6), охватывающего траекторию движения объекта 1, причем плоскость кольцевого магнита перпендикулярна направлению движения объекта. Кольцевой магнит выполнен преимущественно с радиальной намагниченностью. Он может быть сплошным или в виде отдельных сегментов, расположенных по окружности.

Схемы выделения полезного сигнала с преобразователей магнитного поля на фигурах не показаны.

Устройство работает следующим образом. При движении объекта 1 (фиг.1, 3) с расположенным на нем преобразователем магнитного поля (катушкой индуктивности 4 на фиг.1 или измерителем 5 магнитного поля в виде датчика Холла на фиг.3) относительно основания (направляющей) 2 (например, неподвижного) с постоянным магнитом 3 в месте расположения преобразователя (измерителя) возникает переменное магнитное поле. При использовании в качестве преобразователя магнитного поля катушки 4 индуктивности с осью чувствительности, перпендикулярной направлению движения объекта (фиг.1), э.д.с. на выходе катушки имеет вид, показанный на фиг.2. Переход э.д.с. е катушки через нуль соответствует времени t0, когда центра магнита 3 находится напротив центра катушки 4. Пиковые значения э.д.с. в этом случае зависят от скорости движения объекта относительно основания.

При низких скоростях движения объекта сигнал с катушки индуктивности становится малым, переход его через нуль нечетким, соответственно снижается точность определения положения объекта относительно основания. В этом случае предпочтительным является использование в качестве преобразователя магнитного поля измерителя (например, датчика Холла). При этом, если ось чувствительности измерителя перпендикулярна направлению движения объекта, то э.д.с. на выходе измерителя будет иметь вид, показанный на фиг.4. Моменту прохождения центра магнита напротив центра измерителя соответствует максимум э.д.с. е (время t0). Поскольку такая форма сигнала не обеспечивает четкого определения времени t0 (положения объекта, движущегося относительно основания), то предпочтительным является такое расположение измерителя (датчика 5 Холла на фиг.3) в заданном месте основания, при котором его ось чувствительности параллельна направлению движения объекта. В этом случае сигнал с измерителя имеет вид, показанный на фиг.2, т.е. имеет место четкая фиксация времени t0.

При определении положения объектов, имеющих неконтролируемое вращение вокруг оси, параллельной направлению движения (например, объекта 1, перемещающегося сверху вниз в направляющей 2 в виде трубы или стержней, как показано на фиг.5, 6), преобразователь магнитного поля может быть выполнен в виде кольцевого охватывающего объект электрического контура 6 (фиг.5), плоскость которого перпендикулярна направлению движения объекта. В этом случае датчик будет фиксировать прохождение нейтральной плоскости кольцевого контура напротив центра постоянного магнита (электромагнита) 3 (фиг.5) в момент времени t0 (фиг.2) независимо от вращения объекта вокруг оси, параллельной направлению движения объекта. Установка в основании 2 дополнительно одного или нескольких постоянных магнитов (электромагнитов) 7 (фиг.5) позволяет увеличить чувствительность датчика, а также снизить влияние непостоянства зазора 8 между объектом 1 и основанием 2 на величину сигнала с кольцевого контура 6.

При выполнении источника магнитного поля в виде кольцевого постоянного магнита 8 (фиг.6), охватывающего траекторию движения объекта, существенно упрощается конструкция преобразователя магнитного поля, который может быть выполнен, например, в виде малогабаритной катушки 4, установленной на периферийной поверхности объекта, как показано на фиг.6. При выполнении кольцевого магнита с радиальной намагниченностью и осью катушки, перпендикулярной направлению движения объекта, сигнал с катушки имеет вид, показанный на фиг.2, т.е. имеет место четкое определение положения объекта 1 относительно основания 2.

Предлагаемое изобретение может быть применено также для точного определения скорости движения различных объектов, перемещающихся относительно основания. Для этого на основании или на объекте устанавливаются два или более датчиков положения на заданных расстояниях (базах) друг от друга в направлении движения. Скорость объекта (усредненное значение на заданной базе) определяется расстоянием между датчиками и временем прохождения объекта от одного датчика к другому.

Источники информации

1. Датчик положения и скорости перемещения быстродвижущихся тел. - Патент РФ №2193207, G01P 3/42, 2002.

2. Bogdanofi D.W., Knowlen C., Murakami D. and Stonich I. Magnetic Detector for Projectiles in Tubes. - AIAA Journal, Vol.28, No.11, 1990, p.p.1942-1944 (прототип).

1. Датчик положения объекта, движущегося относительно основания, содержащий источник магнитного поля и преобразователь магнитного поля, отличающийся тем, что источник магнитного поля установлен в заданном месте основания и выполнен в виде постоянного магнита или электромагнита постоянного тока с намагниченностью, перпендикулярной направлению движения объекта, а преобразователь магнитного поля расположен на объекте со стороны основания и выполнен в виде измерителя магнитного поля или охватывающего объект кольцевого электрического контура, плоскость которого перпендикулярна направлению движения объекта.

2. Датчик по п.1, отличающийся тем, он дополнительно снабжен дифференцирующим устройством, вход которого соединен с выходом кольцевого электрического контура.

3. Датчик по п.1, отличающийся тем, что источник магнитного поля выполнен в виде кольцевого постоянного магнита, охватывающего траекторию движения объекта, причем плоскость кольцевого магнита перпендикулярна направлению движения объекта.

4. Датчик по п.3, отличающийся тем, что кольцевой магнит выполнен с радиальной намагниченностью.

5. Датчик по п.3, отличающийся тем, что кольцевой магнит выполнен сплошным или в виде отдельных сегментов, расположенных по окружности.



 

Похожие патенты:

Изобретение относится к измерительной технике. .

Изобретение относится к области определения и контроля скорости транспортных средств. .

Изобретение относится к области измерительной техники и может быть использовано в магнитной навигации для определения угловых положений автоматических подводных, надводных и летательных аппаратов, в нефтепромысловой геофизике для определения углового положения буровой скважины.

Изобретение относится к приборостроению, в частности, к "черным ящикам" для транспортных средств и может быть использовано для оперативных регистрации и контроля технического состояния и функционирования автомобилей, а также психофизиологического состояния водителей при расследовании дорожно-транспортных происшествий.

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике, в частности к устройствам для измерения и контроля перемещения, скорости, ускорения, применяемым в системах автоматического управления и регулирования.

Изобретение относится к области коммутационной техники, а именно к способам и устройствам, позволяющим определять положение объекта из магнитного материала, управлять постоянным магнитным полем в трех плоскостях. В способе определения положения объекта из магнитного материала, включающем использование корпуса из немагнитного материала, магнита, создающего постоянное магнитное поле хотя бы одного магнитоуправляемого элемента, расположенного хотя бы в одной плоскости, организацию взаимодействия между магнитоуправляемым элементом и магнитным полем хотя бы в одной плоскости, дополнительно создают в корпусе из немагнитного материала камеру с крышкой, последнюю наполняют демпфирующей жидкостью, а постоянный магнит выполняют в виде тела вращения с диаметральной намагниченностью и размещают в камере в свободном состоянии, способным вращаться хотя бы в одной плоскости, обеспечивают доступ объекта к корпусу в трех плоскостях, регистрируют изменение ориентации постоянного магнита хотя бы в одной плоскости, а тело вращения выполняют в виде шара либо в виде цилиндра, либо в виде диска, либо в виде кольца. Технический результат - возможность определения положения объекта из магнитного материала в трех плоскостях, повышение виброустойчивости и надежности в эксплуатиции, расширение функциональных возможностей, универсальность и простота в применении.2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано при определении параметров вращательного движения. Устройство чувствительного элемента датчика параметров движения исследуемого объекта включает основную катушку индуктивности, при этом основная катушка выполнена плоской и/или пространственно-винтовой в виде многовитковой спирали, при этом она либо имеет крепежные элементы и/или узлы для ее жесткого крепления к упомянутому объекту или к корпусу, или к основанию, или к иному конструктивному элементу датчика, жестко с ним связанному, которые предполагается жестко крепить к такому объекту, либо жестко прикреплена как минимум к одному из упомянутых конструктивных элементов, или составляет с как минимум одним таким элементом одно целое, а соответствующий элемент в этом случае сам является частью упомянутого устройства, при этом основная катушка выполнена из материала, содержащего свободные носители заряда, тогда как ось основной катушки, проходящая через ее центр и перпендикулярная плоскости такой катушки, если она плоская, или совпадающая с ее осью, если она пространственная, и является осью, относительно которой рассматриваются упомянутые параметры, причем основная катушка выполнена с возможностью ее замыкания либо на измерительную электрическую цепь, либо самой на себя посредством электрической цепи замыкания, при том что измерительная электрическая цепь подключается к цепи замыкания или к ее фрагменту, или к ее элементу, либо основная катушка имеет сердечник, на котором располагается как минимум одна дополнительная катушка, которая соединена с измерительной электрической цепью, тогда как основная катушка замкнута сама на себя посредством изделия из материала, содержащего свободные носители заряда, или посредством электрической цепи замыкания. Технический результат - повышение надежности работы акселерометров. 29 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть использовано при определении характеристик движения объекта (скорости, ускорения). Способ предполагает применение включающего чувствительный элемент датчика с основной катушкой индуктивности. При этом используют опорную катушку индуктивности, а в качестве выходных сигналов чувствительного элемента используют либо сигналы, получаемые от упомянутых катушек, либо посредством сердечника обеспечивают связь как минимум одной из упомянутых катушек с как минимум одной дополнительной катушкой. Причем в катушках, упомянутых первыми, связанных посредством сердечника с дополнительными катушками, возбуждают ток, при этом в качестве сигналов чувствительного элемента используют сигналы, получаемые в том числе и от используемых дополнительных катушек, в то время как до выделения полезных сигналов из помех обработку выходных сигналов чувствительного элемента, соответствующих основной и как минимум одной опорной катушке, проводят раздельно, благодаря чему обеспечивают возможность сопоставления полезных сигналов, связанных с основной и как минимум одной опорной катушкой, друг с другом, для чего используют электронную цепь сравнения полезных сигналов, посредством которой находят различие в них. Далее либо по нему определяют приблизительное значение как минимум одной характеристики из упомянутых, для чего используют измерительную электронную цепь, которая может быть совмещена с упомянутой цепью сравнения, тогда как по самим полезным сигналам, с учетом только что упомянутого приблизительного значения и/или с учетом динамики изменения такого значения определяют приблизительное значение как минимум одной другой характеристики из упомянутых, для чего также используют измерительную электронную цепь либо дополнительную, либо упомянутую первой, либо по полезным сигналам и упомянутому различию и/или по его динамике с использованием электронного аналогового или цифрового решающего устройств или таковых и энергонезависимой памяти определяют точные значения упомянутых характеристик. Технический результат заключается в повышении надежности работы датчиков за счет исключения из них подвижных деталей, узлов или молекулярных сред. 11 н. и 27 з.п. ф-лы, 12 ил.

Изобретение относится к прокатному производству. Технический результат - повышение точности измерения. Способ заключается в том, что на отражательные поверхности прокатываемой полосы с использованием по меньшей мере двух приемопередающих устройств (3) направляют электромагнитное излучение (6) в микроволновом диапазоне. Принимают отраженные сигналы от отражательных поверхностей (4). При этом отражательные поверхности (4) лежат на проходящей параллельно направлению (12) движения полосы линии (13) на расстоянии (10) друг от друга. Каждый из отраженных сигналов подают в устройство (11) оценки скорости полосы, посредством которого с использованием метода корреляции определяют упомянутую скорость полосы. 6 н. и 13 з.п. ф-лы, 6 ил.
Наверх