Изолирующая опорно-подвесная трехфазная подвеска воздушных линий электропередачи

Изобретение относится к области строительства. Изолирующая опорно-подвесная трехфазная подвеска воздушных линий электропередачи содержит траверсу опорной стойки, к которой на подвесной изолирующей конструкции подвешены провода воздушной линии электропередачи. Подвесная изолирующая конструкция выполнена в виде последовательно соединенных друг с другом в вертикальном направлении подвесных изолирующих подвесок, к которым подвешены фазные провода, при этом каждая подвесная изолирующая подвеска связана с опорной стойкой отдельным опорным изолятором для фиксации указанных подвесок в горизонтальном направлении. Техническим результатом является повышение надежности конструкции и уменьшение габаритов по ширине площади, отчуждаемой под траверсу ЛЭП. 3 ил.

 

Изобретение относится к области строительства опорных конструкций линий электропередачи высокого напряжения. В частности, изобретение касается конструкции системы закрепления проводов трехфазных воздушных линий электропередачи (ЛЭП).

В большинстве типов трехфазных воздушных линий электропередачи закрепление проводов 1 осуществляется при помощи свободных изолирующих подвесок 2, каждая из которых в свою очередь крепится к отдельной стальной траверсе 3, закрепленной на стойке опоры 4 (фиг.1). Такие решения описаны, например, в SU №1573117, Е04Н 12/00, опубл. 23.06.1990 или SU №545738, Е04Н 12/00, опубл. 05.02.1977

При таком способе закрепления проводов минимальное расстояние между проводами по вертикали равно сумме двух расстояний - изоляционного воздушного промежутка Нвозд.ф. между проводом и нижнерасположенной траверсой и строительной высоты изолирующей фазной подвески Низ.ф. Указанное расстояние для каждого класса напряжения ЛЭП имеет конкретное значение и не может быть уменьшено, т.к. это приведет к перекрытию воздушного промежутка между проводом и траверсой при возникновении перенапряжений. Кроме того, такая подвеска может отклоняться от вертикали под воздействием ветрового давления, что требует удлинять вылет траверсы для обеспечения изоляционного расстояния между проводом и стойкой опоры ЛЭП, что увеличивает массу и стоимость траверс, а также увеличивает площадь, отчуждаемую под трассу ЛЭП, и ширину вырубки просек в случае прохождения ЛЭП по лесным массивам. Изоляторы в такой подвеске воспринимают на себя как ветровую, так и весовую составляющие нагрузки, что требует выполнять их на значительные механические нагрузки, что, в свою очередь, увеличивает их стоимость.

В то же время, в ряде случаев есть необходимость максимально уменьшить расстояние между проводами соседних фаз ЛЭП и между проводами и стойкой опоры ЛЭП. Такая необходимость возникает в следующих и в ряде других случаев:

- в компактных ЛЭП;

- в ЛЭП с защищенными проводами;

- в условиях, когда по различным причинам ЛЭП выполняется с небольшими пролетами, и в связи с этим появляется необходимость уменьшить междуфазные расстояния, например в городских условиях;

- в условиях, когда по различным причинам необходимо понизить высоту опор, например для повышения грозоупорности ЛЭП или для уменьшения ширины охранной зоны ЛЭП.

Известна конструкция сближения между собой проводов ЛЭП за счет применения для закрепления проводов ЛЭП подвесных 5 и опорных 6 изоляторов без применения стальных траверс (фиг.2). При этом опорный изолятор закрепляется перпендикулярно стойке опоры ЛЭП, а подвесной - под некоторым углом, величина которого обычно составляет около 30 градусов. При такой конструкции подвески возможно обеспечить минимальное расстояние между проводами соседних фаз, равное изоляционному воздушному промежутку Нвозд.л. между фазами ЛЭП, выдерживающими линейные перенапряжения.

Однако у этой конструкции есть существенный недостаток, состоящий в том, что подобная конструкция подвески приводит к увеличенным по сравнению со свободной подвеской нагрузкам в подвесных и в опорных изоляторах, возникающих от суммарного действия весовой и ветровой составляющих, что предъявляет повышенные требования к механической прочности всех изоляторов, что увеличивает их стоимость.

Известна также конструкция изолирующей опорно-подвесной трехфазной подвески ЛЭП, описанная в US №3316342, Н01В 17/00, Н01В 17/08, H02G 7/20, Н01В 17/00, Н01В 17/02, H02G 7/20, опубл. 25.04.1967. Известная трехфазная подвеска содержит одну стальную траверсу, к которой на подвесной изолирующей подвеске горизонтально подвешены разнесенные провода ЛЭП, при этом фиксация проводов в горизонтальной плоскости осуществляется опорным изолятором, расположенным наклонно к горизонтальному направлению.

Данное решение принято в качестве прототипа для заявленного объекта.

Недостатком данной конструкции подвески проводов является то, что она не предусматривает вертикального разнесения проводов. В известной конструкции провода линейного напряжения расположены смежно в одной горизонтальной плоскости и подвешены к указанной вертикальной изолирующей подвеске. А фазные провода подвешены на отдельной изолирующей подвеске в другом месте на расстоянии от проводов линейного напряжения и в их же плоскости расположения. Таким образом, данная конструкция развита по ширине и ей присущи все недостатки, что отмечены в ранее описанных примерах.

Аналогичные решения использованы в DE №550405, SU №566288, US №7057103. Использование вертикальной подвесной изолирующей подвески для проводов ЛЭП с фиксацией проводов в горизонтальной плоскости опорным изолятором, распложенным наклонно или горизонтально, в известных примерах приводит:

- либо к увеличению вылета траверсы для обеспечения изоляционного расстояния между проводом и стойкой опоры ЛЭП, что увеличивает массу и стоимость траверс, а также увеличивает площадь, отчуждаемую под трассу ЛЭП, и ширину вырубки просек в случае прохождения ЛЭП по лесным массивам (US №3316342, SU №566288);

- либо к увеличенным по сравнению со свободной подвеской нагрузкам в подвесных и в опорных изоляторах, возникающих от суммарного действия весовой и ветровой составляющих, что предъявляет повышенные требования к механической прочности всех изоляторов, что также увеличивает их стоимость (DE №550405, US №7057103).

Настоящее изобретение направлено на решение технической задачи по изменению схемы подвески проводов за счет их последовательного соединения друг с другом на вертикальных подвесных изолирующих подвесках, (верхняя изолирующая подвеска рассчитана на фазное, а средняя и нижняя - на линейное напряжение ЛЭП), каждый из которых фиксируется горизонтально расположенным опорным изолятором.

Достигаемый при этом технический результат заключается в повышении надежности конструкции при снижении ее механической прочности и уменьшении габаритов по ширине площади, отчуждаемой под трассу ЛЭП.

Указанный технический результат достигается тем, что в изолирующей опорно-подвесной трехфазной подвеске воздушных линий электропередачи, содержащей траверсу опорной стойки, к которой на подвесной изолирующей конструкции подвешены провода воздушной линии электропередачи и которая через опорный изолятор прикреплена к опорной стойке, подвесная изолирующая конструкция выполнена в виде последовательно соединенных друг с другом в вертикальном направлении подвесных изолирующих подвесок, к которым подвешены фазные провода, при этом каждая подвесная изолирующая подвеска связана с опорной стойкой отдельным опорным изолятором для фиксации указанных подвесок в горизонтальном направлении.

Указанные признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности существенных признаков, достаточной для получения требуемого технического результата.

Изобретение поясняется конкретным примером, который, однако, не является единственно возможным, но наглядно демонстрирует возможность достижения приведенной совокупностью признаков требуемого технического результата.

На фиг.1 - пример закрепления проводов по первому аналогу;

фиг.2 - пример закрепления проводов по второму аналогу;

фиг.3 - пример закрепления проводов согласно изобретению.

Согласно настоящему изобретению рассматривается конструкция изолирующей опорно-подвесной трехфазной подвески ЛЭП (фиг.3). Предлагаемая подвесная изолирующая конструкция содержит одну стальную траверсу 7 опорной стойки ЛЭП, к которой на последовательно соединенных друг с другом подвесных изолирующих подвесках 8, 9, 10 вертикально подвешены провода ЛЭП. При этом верхняя изолирующая подвеска рассчитана на фазное напряжение, а средняя и нижняя - на линейное напряжение ЛЭП. Изолирующие подвески могут выполняться с различной механической прочностью, т.к. верхняя подвеска держит вес всех трех фаз, средняя - вес двух фаз, а нижняя вес одной фазы. С целью фиксации проводов в горизонтальной плоскости применены горизонтально располагаемые опорные изоляторы 11, связанные с опорной стойкой, с одной стороны, и с изолирующими подвесками 8, 9, 10, с другой стороны. При этом каждый отдельный опорный изолятор 11 связан с отдельной изолирующей подвеской. При такой схеме подвески вся весовая нагрузка воспринимается только подвесными изолирующими подвесками, а вся ветровая нагрузка - только опорными изоляторами 11. В предлагаемой подвеске существенно облегчается работа как подвесных, так и опорных изоляторов, что позволяет выполнить их с меньшей механической прочностью, и, соответственно, снизить их стоимость.

Настоящее изобретение промышленно применимо, так как основано на рациональном расположении элементов опоры, обеспечивающем повышение эксплуатационных характеристик опоры при рабочих весовых и ветровых нагрузках.

Настоящее изобретение позволяет обеспечить изоляционное расстояние между проводом и стойкой опоры ЛЭП и проводами, уменьшить площадь, отчуждаемую под трассу ЛЭП, и ширину вырубки просек в случае прохождения ЛЭП по лесным массивам, уменьшить механическую прочность всех изоляторов и соответственно вес самой стойки.

Изолирующая опорно-подвесная трехфазная подвеска воздушных линий электропередачи, содержащая траверсу опорной стойки, к которой на подвесной изолирующей конструкции подвешены провода воздушной линии электропередачи и которая через опорный изолятор прикреплена к опорной стойке, отличающаяся тем, что подвесная изолирующая конструкция выполнена в виде последовательно соединенных друг с другом в вертикальном направлении подвесных изолирующих подвесок, к которым подвешены фазные провода, при этом каждая подвесная изолирующая подвеска связана с опорной стойкой отдельным опорным изолятором для фиксации указанных подвесок в горизонтальном направлении.



 

Похожие патенты:

Изобретение относится к электроэнергетике и, в частности, к ушкам, используемым для соединения изоляторов и иных элементов изолирующих подвесок воздушных линий электропередачи.

Изобретение относится к электротехнике и электроэнергии и может быть использовано при проектировании и строительстве кабельных линий электропередачи с обеспечением требований санитарно-эпидемиологических правил и норм по предельно допустимым уровням магнитных полей (МП) промышленной частоты в помещениях жилых, административных, производственных зданий и на селитебных территориях.

Изобретение относится к одиночной вертикальной опоре, составленной из двух частей: фундаментной нижней стойки и верхней стойки, которые связаны между собой дополнительным кронштейном, одним концом связанным с нижней стойкой, а другим посредством хомута - с верхней стойкой.

Изобретение относится к системе линий электропередачи по меньшей мере с двумя проводниками для передачи электрической энергии. .

Изобретение относится к воздушной линии высокого напряжения для напряжения свыше 40 кВ, в частности - для напряжений свыше 100 кВ, имеющей протянутые воздухе фазные провода, поддерживаемые опорной конструкцией.

Коромысло // 1791890

Изобретение относится к электротехнике и может быть использовано при сооружении линий электропередачи. .

Изобретение относится к электроэнергетике и может быть использовано в устройствах передачи и распределения электроэнергии в электрических сетях низкого напряжения.

Изобретение относится к области электротехнического оборудования

Изобретение относится к электроэнергетике и может быть использовано для закрепления проводов воздушных линий электропередачи 6÷35 кВ

Изобретение относится к таким областям, как электроэнергетика, в части передачи электроэнергии, и электротехническая промышленность, в части производства кабельной и проводниковой продукции

Изобретение относится к способу изготовления опорного изолятора

Изобретение относится к воздушным линиям электропередач

Изобретение относится к области строительства опорных конструкций линий электропередачи высокого напряжения

Изобретение относится к области строительства опорных конструкций линий электропередачи высокого напряжения

Изобретение относится к изолирующей опорной подвеске проводов воздушной линии электропередач, представляющей собой каскад изоляторов, установленный вертикально на вершине опорной стойки. Каскад собран из установленных последовательно и жестко скрепленных между собой серийных опорных изоляторов с дистанционными вставками между изоляторами или без дистанционных вставок или же выполнен цельном диэлектрическим несущим элементом, на боковой поверхности которого закрепляются узлы разрыва поверхностного разряда, при этом в качестве диэлектрического несущего элемента может выступать вершина опорной стойки, выполненная из диэлектрического композиционного материала. Провода закрепляются гибкими или шарнирными подвесами на верхних торцах опорных изоляторов или дистанционных вставок или на боковой поверхности диэлектрического несущего элемента через промежутки, определяемые классом напряжения воздушной линии. Изобретение обеспечивает вертикальное расположение проводов на минимальном расстоянии от вертикальной оси опорной стойки и повышает надежность закрепления. 3 з.п. ф-лы, 6 ил.

Изобретение относится к области электроэнергетики и может быть использовано при строительстве и реконструкции воздушных линий электропередачи. Технический результат: обеспечение простоты сборки и монтажа устройства крепления оголовника. Устройство крепления верхнего оголовника для установки траверсы на торце конусной пустотелой композитной опоры включает стойку, выполненную из композиционного материала конусной пустотелой, в верхнюю часть которой через основание установлен стеклопластиковый конусный корпус со шпильками, вставленными в отверстия основания, и с навинченными гайками на их резьбовые части. В прорези на верхнем торце конусной пустотелой композитной опоры установлен металлический диск с отверстиями для установки свободного резьбового конца шпилек, посадкой траверсы на резьбовой конец шпилек через отверстия и последующим навинчиванием гаек на резьбовые концы шпилек. 2 ил.

Изобретение относится к строительству. Технический результат: повышение эффективности использования прочностных качеств однотипных опор для ВЛ в разных климатических районах за счет выравнивания нагрузки на опору в каждом климатическом районе путем регулирования высоты опор и расстояния между ними. Способ установки линий электропередачи для различных климатических районов, заключающийся в том, что климатические районы, отличающиеся друг от друга по параметрам ветрового давления и толщине стенки гололеда и выстроенные в порядке возрастания этих параметров, разбивают по крайней мере на две группы, в каждой из которых содержится по крайней мере два отличных друг от друга по указанным параметрам климатических района, и для линий электропередачи в одной группе климатических районов используют опору, конструкция которой отлична от конструкции опоры в другой группе климатических районов. Причем для каждого климатического района в одной группе используют одинаковую конструкцию опоры, механические показатели которой рассчитывают по условиям работы в климатическом районе с наибольшим порядковым номером в группе, а для каждого климатического района в этой группе с меньшими порядковыми номерами для установки опоры указанной конструкции используют подставку, высота которой тем больше, чем меньше порядковый номер климатического района в группе, при этом опоры на подставках по линии электропередач размещают на расстоянии, увеличивающемся в соответствии с убыванием порядкового номера климатического района. 4 ил.
Наверх