Способ гидрообработки углеводородного сырья

Изобретение относится к способу гидрообработки углеводородного сырья, заключающумуся в том, что а) углеводородное сырье (УС) и водород смешивают в необходимом соотношении путем подачи обоих потоков в струйный насос, причем подача УС осуществляется в инициирующую часть насоса с давлением, обеспечивающим необходимые технологические объемный расход и давление смеси, б) смесь со стадии а) подают в реактор гидрообработки, в) поток смеси выходящий из реактора гидрообработки, охлаждают до температуры ниже критической температуры (Ткр) самого легкого компонента УС, но выше самого тяжелого компонента газовой фазы и разделяют на два потока, жидкостной и газообразный, г) газообразный поток сепарируют, последовательно снижая его температуру, тем самым, отделяя от него сконденсированные компоненты имеющие на каждой стадии самую высокую критическую температуру, далее водород очищают методом короткоцикловой адсорбции и подают на вход струйного насоса, замыкая тем самым контур его рециркуляции или газообразный поток направляют в реактор дополнительной гидрообработки и лишь затем приступают к его сепарации, очистке методом короткоцикловой адсорбции и возврату водорода в контур его рециркуляции, д) жидкостной поток очищают от сжиженных газов, последовательно дросселируя давление потока. Данный способ позволяет снижать капиталоемкость, энергозатраты, а также снижать паразитное растворение газов в жидкости.

 

Каталитической гидрообработкой в нефтеперерабатывающей промышленности принято называть взаимодействие нефтяного сырья с водородом в присутствии соответствующего катализатора в соответствующих условиях. Весьма широкий спектр технологических процессов попадают под это определение: гидроочистка, гидрообессеривание, гидрокрекинг, гидрооблагораживание, гидродепарафинизация, гидроизомеризация и даже в известной степени риформинг. Интервал объемных соотношений углеводородного сырья и водорода в этих процессах весьма широк (100-1000), при таком кажущемся великом преобладании водорода в этом соотношении массовая же доля его соизмерима с массовой долей обрабатываемого сырья.

Традиционно в процессах гидрообработки смесь на выходе из реактора охлаждают в последовательных теплообменниках различного типа и лишь затем отделяют жидкую фазу смеси от газообразной [1]. Логика такого построения технологического процесса понятна, но она не учитывает тот факт, что со снижением температуры жидкой фазы существенно возрастает растворимость компонентов газовой фазы в ней.

Известен способ гидроочистки топлив [2], включающий стадии смешения исходного топлива с водородсодержащим газом, каталитического гидрирования смеси с получением гидрогенизата, охлаждения гидрогенизата, разделения в сепараторе высокого давления с получением газовой и жидких фаз, дросселирования газовой и жидких фаз, дросселирования газовой и жидких фаз, отделения от жидкой фазы углеводородного газа, стабилизации с получением стабильного гидроочищенного топлива, отличающийся тем, что с целью повышения эффективности процесса, охлаждение гидрогенизата проводят до температуры на 5-20°С выше температуры начала однократного испарения топлива, перед дросселированием газовую фазу конденсируют и охлаждают до 35-40°С, отделяют водородсодержащий газ, конденсат дросселируют и после отделения от него углеводородов C4-C5 нагревают и направляют на стабилизацию с получением стабильной головной фракции топлива, жидкую фазу перед дросселированием газовую фазу конденсируют и охлаждают до 35-40°С и после отделения углеводородных газов смешивают со стабильной головной фракцией топлива с получением стабильного гидроочищенного топлива.

Данный способ является развитием традиционного, действительно, если охлаждать поток смеси на выходе реактора и проводить это не снижая давление потока, то данное давление в дальнейшем существенно облегчает дегазацию гидрогенизата.

Задача компремирования водорода в традиционных технологических схемах гидрообработки является самой капиталоемкой и энергозатратной. Действительно, сжимать водород до необходимых давлений (порой до 30 мПа) в компрессорных машинах с высоким кпд невозможно, поскольку мгновенная масса сжимаемого объема ничтожно мала в сравнении с массой движущихся частей компрессора. Использование для таких целей по изобретению современных струйных насосов более выгодно, поскольку для создания тех же давлений и объемных расходов водородной среды энергозатраты в десятки раз ниже, а о материалоемкости даже не стоит упоминать в их сравнении. Использование в качестве рабочего инициирующего потока подачу собственно самого же углеводородного сырья вообще позволяет считать такую идею непревзойденной по технической привлекательности. Современные насосы-дозаторы позволяют производить подачу сырья с требуемыми для осуществления такого процесса давлениями. Также к неоспоримым преимуществам такого метода стоит отнести и тот факт, что в струйном насосе происходит максимально достижимая степень гомогенизации потока жидкой и газовой фаз.

Для исключения факта паразитного растворения, свойственного всем известным ранее методам разделения потока смеси, по изобретению на выходе из реактора гидрообработки, предлагается разделять поток на газовый и жидкостной лишь охладив этот поток до температуры несколько ниже критической температуры для самого «легкого» целевого компонента процесса гидрообработки, но более высокой, чем критическая температура самого тяжелого компонента газовой фазы. Использование для разделения жидкой и газовой фаз циклонных или вихревых сепараторов позволяет осуществить этот процесс с достаточно удовлетворительной степенью разделения. Остаточные следы компонентов жидкой фазы в газовой составляют сотые доли процента.

Газовая фаза, в случае отделения ее от жидкой в зоне максимальных температур, будет представлена из собственно водорода, метана, пропана, бутана и этана, в некоторых процессах к ним добавятся сероводород и аммиак. Критическая температура всех этих газов существенно больше, чем у водорода, поэтому использование последовательного снижения температуры потока, без снижения его давления позволяет переводить их в конденсированную фазу, отделяя тем самым их от газообразного водорода.

Этан с метаном целесообразно отделять от потока методом короткоцикловой адсорбции.

Процесс получения высокооктановых бензинов можно технологически существенно упростить, так гидроочистке можно подвергать всю широкую фракцию бензинов, не отделяя от него фракцию нк - 82°С. Подвергая риформингу всю эту широкую фракцию, мы не подвергаем никаким технологическим рискам катализатор, лишь несколько вынуждены увеличить его объем. Отделив газовую и жидкую фазы при температуре 300-330°С можно отсечь из основного потока все компоненты фракции нк - 82°С, а также бензол и толуол и направить этот газовый поток в реактор гидроизомеризации. Присутствие в газовом потоке побочных газов метана, пропана и пр. не мешает проведению процесса, лишь вынуждает несколько повысить объем катализатора. Такая организация процесса позволяет исключить целую технологическую линию гидроизомеризации.

Литература

1. Суханов В.П., каталитические процессы в нефтепереработке, М.: Химия, 1979, с.238.

2. Способ гидроочистки топлив. Авторское свидетельство СССР SU 1086007, 15.04.1984 (прототип).

Способ гидрообработки углеводородного сырья, заключающийся в том, что

а) углеводородное сырье (УС) и водород смешивают в необходимом соотношении путем подачи обоих потоков в струйный насос, причем подача УС осуществляется в инициирующую часть насоса с давлением, обеспечивающим необходимые технологические объемный расход и давление смеси,

б) смесь со стадии а) подают в реактор гидрообработки,

в) поток смеси, выходящий из реактора гидрообработки, охлаждают до температуры ниже критической температуры (Ткр) самого легкого компонента УС, но выше самого тяжелого компонента газовой фазы и разделяют на два потока, жидкостной и газообразный,

г) газообразный поток сепарируют, последовательно снижая его температуру, тем самым, отделяя от него сконденсированные компоненты, имеющие на каждой стадии самую высокую критическую температуру, далее водород очищают методом короткоцикловой адсорбции и подают на вход струйного насоса, замыкая тем самым контур его рециркуляции, или газообразный поток направляют в реактор дополнительной гидрообработки и лишь затем приступают к его сепарации, очистке методом короткоцикловой адсорбции и возврату водорода в контур его рециркуляции,

д) жидкостной поток очищают от сжиженных газов последовательно, дросселируя давление потока.



 

Похожие патенты:

Изобретение относится к нефтеперерабатывающей промышленности, в частности к малотоннажным установкам для переработки углеводородного сырья (нефти, стабилизированного газового конденсата и др.) путем жидкофазного окислительного каталитического крекинга, дегидрирования, олигомеризации, изомеризации, ароматизации в слое гетерогенных катализаторов.
Изобретение относится к способам каталитического риформинга и может быть использовано на предприятиях нефтеперерабатывающей, нефтехимической и газовой промышленности.
Изобретение относится к области нефтепереработки, а именно технологии каталитического риформинга, и может быть использовано в нефтеперерабатывающей промышленности при производстве высокооктановых бензинов.
Изобретение относится к области нефтепереработки, а именно к технологии каталитического риформинга, и может быть использовано в нефтеперерабатывающей промышленности при производстве высокооктановых бензинов.

Изобретение относится к области нефтепереработки, а именно технологии каталитического риформинга, и может быть использовано в нефтеперерабатывающей промышленности при производстве высокооктановых бензинов.

Изобретение относится к нефтегазопереработке, в частности к переработке углеводородного сырья путем дегидрирования, крекирования, ароматизации и изомеризации в слое гетерогенного катализатора при периодической регенерации последнего.
Изобретение относится к получению моторного топлива, а именно к каталитическим способам получения из различного углеводородного сырья высокооктанового бензина и высокоцетанового дизельного топлива с низкой точкой замерзания.
Изобретение относится к катализаторам для получения высокооктановых компонентов бензина и ароматических углеводородов в процессе риформинга
Изобретение относится к формованному катализатору с заданной высокой плотностью и с заданным низким соотношением компонента платиновой группы к олову и касается способа применения катализатора для конверсии углеводородов

Изобретение относится к технологии каталитической обработки нефти или нефтепродуктов, в частности к способу их каталитического риформинга в сочетании с крекингом

Изобретение относится к производству экологических высокооктановых компонентов моторных топлив из бензиновых фракций или бензиновых фракций и С1-С4-углеводородных газов

Изобретение относится к способу получения легких олефинов, включающему ввод исходного сырья - углеводородного масла - в контакт с катализатором каталитической конверсии в реакторе для каталитической конверсии, включающим одну или несколько реакционных зон для проведения реакции, где исходное сырье в виде углеводородного масла подвергают реакции каталитической конверсии в присутствии ингибитора, и отделение пара реагента, произвольно содержащего ингибитор, от кокса, нанесенного на катализатор, а целевое изделие, содержащее этилен и пропилен, получают путем отделения пара реагента, катализатор отделяют от кокса и восстанавливают для повторного использования в реакторе, причем отношения ингибитора к исходному сырью составляет 0,001-15% по весу, ингибитор выбирают из вещества, обладающего способностью вырабатывать водород, или имеющего восстановительную способность, или обладающего адсорбционной способностью на активном центре кислотных катализаторов и их смесей, причем вещество, обладающее способностью вырабатывать водород или содержащее водород, выбирают из водорода, тетрагидронафталена, декалина, каталитического сухого крекинг-газа, коксового сухого газа и их смесей, веществом, обладающим восстановительной способностью, является окись углерода, а вещество, обладающее адсорбционной способностью на активном центре кислотных катализаторов, выбирают из метанола, этилового спирта, аммиака, пиридина и их смесей
Изобретение относится к переработке различного нефтяного сырья, а именно газовых конденсатов и нефтяных дистиллятов с концом кипения не выше 400°С, в высокооктановые бензины, дизельное топливо марки «А» или топлива для реактивных двигателей
Изобретение относится к системе установки каталитического риформинга
Изобретение относится к области переработки углеводородного сырья и катализа Изобретение касается способа осуществления каталитической эндотермической реакции газового сырья, в котором подвод тепловой энергии к зоне расположения неподвижного катализатора осуществляют конвекцией от частей корпуса реактора, нагреваемых действием токов высокой частоты, причем корпус реактора выполнен теплоизолированным, а в процессе подвода тепла регулируют подвод по длине слоя катализатора, обеспечивая равномерный прогрев слоя по сечению катализатора за счет встроенных в корпус реактора металлоконструкций, обогреваемых токами высокой частоты

Изобретение относится к устройствам для каталитической и плазменной обработки жидких сред нефти и нефтепродуктов, в частности к технологии их каталитического риформинга в сочетании с крекингом
Наверх