Способ получения нитрида галлия

Изобретение относится к способам синтеза полупроводниковых материалов и может быть использовано для получения GaN. Предложен способ получения GaN, в котором выполняют реакционную камеру в виде двух соединенных между собой емкостей. В первую емкость загружают хлор в герметичном сосуде и металлический галлий, а во вторую емкость загружают нитрид лития и аммиак в герметичном сосуде. После этого вакуумируют и герметизируют камеру, далее вскрывают сосуд с хлором и нагревают первую емкость до 210-220°С. Затем вскрывают сосуд с нитридом лития и аммиаком и нагревают вторую емкость до 850-870°С, повторно герметизируют камеру и разделяют емкости. В результате в первой емкости находятся ненужные примеси, а во второй - твердый нитрид галлия. Предложенное изобретение позволяет получить чистый нитрид галлия и уменьшить загрязнение окружающей среды в результате исключения улетучивания веществ, используемых в процессе синтеза. 1 ил.

 

Изобретение относится к способам синтеза полупроводниковых материалов и может быть использовано для получения GaN.

Известен способ получения GaN [Robert W. Cumberland, Richard G. Blair, Charles H. Wallace, Thomas K. Reynolds, and Richard B. Kaner. Thermal control of Metathesis Reaction Producing GaN and InN. // J. Physical Chemistry B. 2001, 105, pp.11922-11927]. Способ включает взвешивание твердых реагентов GaI3, Li3N, NH4Cl и LiNH2, измельчение и загрузку в стальной реакционный сосуд, термообработку, удаление побочных продуктов растворением в воде или в этиловом спирте, фильтрование под вакуумом и высушивание на воздухе.

Способ не исключает улетучивание компонентов шихты и загрязнение окружающей среды в процессе взвешивания и измельчения, загрузки компонентов в реакционную камеру, удаления побочных продуктов, фильтрования под вакуумом и высушивания на воздухе, что затрудняет получение GaN экологически безопасным безотходным методом.

Способ не позволяет избавиться от примесей соединений водорода, кислорода, Са2О3, GaO2H, Ga(ОН)3 и других веществ, образующихся в процессе синтеза, что приводит к снижению чистоты GaN.

Известен способ получения GaN [Tsuji Hideto. Method for producing nitride. Патент JR 2005179138]. Способ включает взаимодействие Li3N с GaГ3NH3, где Г - Cl, Br, I в вакуумированом сосуде при температуре от 200°С до температуры разложения GaN.

Способ не исключает улетучивание GaГ3NH3 и Li3N в процессе загрузки в реакционную камеру, вакуумирование камеры в процессе удаления продуктов реакции из реакционной камеры, что приводит к загрязнению окружающей среды.

Способ не позволяет избавиться от примеси соединений легких элементов, не обеспечивает отделение и удаление из реакционной камеры нелетучих и летучих примесей в процессе синтеза, что приводит к снижению чистоты GaN в процессе синтеза.

Задачей изобретения является повышение экологической безопасности получения нитрида галлия безотходным методом при сохранении чистоты вводимых компонентов.

Предложен способ получения GaN, в котором выполняют реакционную камеру в виде двух соединенных между собой емкостей. В первую емкость загружают хлор в герметичном сосуде и металлический галлий, а во вторую емкость загружают нитрид лития и аммиака в герметичном сосуде. После чего вакуумируют и герметизируют камеру, далее вскрывают сосуд с хлором и нагревают первую емкость до 210-220°С. Затем вскрывают сосуд с нитридом лития и аммиаком и нагревают вторую емкость до 850-870°С, повторно герметизируют камеру и разделяют емкости. В результате в первой емкости находятся ненужные примеси, а во второй - твердый нитрид галлия.

Выполнение реакционной камеры в виде двух соединенных емкостей позволяет отдельно в первой емкости осуществить реакцию 2Ga+3Cl2=2GaCl3, позволяет отделить GaCl3 от тугоплавких примесей и перевести GaCl3 во вторую емкость, позволяет провести во второй емкости реакцию

Li3N+GaCl3=GaN+3LiCl,

позволяет перевести LiCl и летучие примеси в первую емкость, позволяет герметизировать емкости и отделить первую емкость от второй без их вскрытия.

Загрузка хлора в герметичном сосуде устраняет его испарение, позволяет провести вакуумирование без выброса реагентов и исключает загрязнение окружающей среды.

Загрузка Li3N с NH3 в емкость в герметичном сосуде устраняет их испарение, позволяет провести вакуумирование камеры без выброса реагентов и исключает загрязнение окружающей среды.

Вакуумирование реакционной камеры после загрузки металлического галлия, хлора и Li3N с NH3 в герметичных сосудах обеспечивает удаление кислорода и влаги с поверхности реакционной камеры, находящихся в ней сосудов и галлия, обеспечивает повышение чистоты вводимых компонентов, понижение общего давления в камере и снижение взрывоопасности процесса синтеза.

Вскрытие сосуда с хлором после вакуумирования реакционной камеры и нагревание первой емкости до 210-220°С исключает процесс гидролиза, обеспечивает образование газообразного GaCl3, газообразных летучих примесей, отделение их от оксидов и других нелетучих примесей и перевод во вторую емкость.

Вскрытие сосуда с Li3N и NN3 и нагревание второй емкости до 850-870°С обеспечивает полное взаимодействие между компонентами, образование твердого GaN и жидкого LiCl, перевод LiCl и других побочных продуктов в первую емкость, герметизацию и разделение емкостей без вскрытия.

Таким образом, отличительные признаки являются существенными для получения нитрида галлия безотходным методом при сохранении чистоты вводимых компонентов.

Нагревание первой емкости ниже 210°С нецелесообразно, так как приводит к конденсации GaCl3кип=202°С). Нагревание выше 220°С нецелесообразно, так как GaCl3 полностью перегоняется при 220°С.

Нагревание второй емкости ниже 850°С нецелесообразно, так как не происходит отделение LiCl (Тплавления=814°С) от GaN. Нагревание выше 870°С также нецелесообразно, так как приводит к разложению GaN.

Пример 1. Реакционную камеру выполняли в виде двух сообщающихся между собой емкостей. В емкость 1 вводили 7,62 г галлия и 11,63 г хлора в герметичном сосуде. В емкость 2 вводили 3,8 г нитрида лития в герметичном сосуде, заполненным аммиаком. Реакционную камеру вакуумировали до давления 10-4-10-5 мм рт.ст., герметизировали, вскрывали сосуд с хлором и нагревали емкость 1 до 210°С. Образовавшийся хлорид галлия конденсировали в емкость 2. Затем вскрывали сосуд с нитридом лития, нагревали емкость 2 до температуры 850°С, образовавшийся хлорид лития конденсировали в емкость 1, емкости герметизировали и разделяли.

Выход нитрида галлия в расчете на элементарный галлий составлял 87%.

Пример 2. Реакционную камеру выполняли в виде двух сообщающихся между собой емкостей. В емкость 1 вводили 5,98 г галлия и 9,12 г хлора в герметичном сосуде. В емкость 2 вводили 2,99 г нитрида лития в герметичном сосуде, заполненным аммиаком. Реакционную камеру вакуумировали до давления 10-4-10-5 мм рт.ст., герметизировали, вскрывали сосуд с хлором и нагревали емкость 1 до 220°С. Образовавшийся хлорид галлия конденсировали в емкость 2. Затем вскрывали сосуд с нитридом лития, нагревали емкость 2 до температуры 870°С, образовавшийся хлорид лития конденсировали в емкость 1, емкости герметизировали и разделяли.

Выход нитрида галлия в расчете на элементарный галлий составлял 90%.

Пример 3. Реакционную камеру выполняли в виде двух сообщающихся между собой емкостей. В емкость 1 вводили 7,93 г галлия и 12,10 г хлора в герметичном сосуде. В емкость 2 вводили 3,96 г нитрида лития в герметичном сосуде, заполненным аммиаком. Реакционную камеру вакуумировали до давления 10-4-10-5 мм рт.ст., герметизировали, вскрывали сосуд с хлором и нагревали емкость 1 до 215°С. Образовавшийся хлорид галлия конденсировали в емкость 2. Затем вскрывали сосуд с нитридом лития, нагревали емкость 2 до температуры 860°С, образовавшийся хлорид лития конденсировали в емкость 1, емкости герметизировали и разделяли.

Выход нитрида галлия в расчете на элементарный галлий составлял 88%.

На чертеже приведены три рентгенограммы полученного нитрида галлия, которые относятся к примерам 1-3. Отсутствие дополнительных пиков, не принадлежащих нитриду галлия, на рентгенограммах указывает на чистоту полученного нитрида.

Массы исходных веществ, реакционной камеры и емкостей до синтеза и после синтеза совпадали в пределах погрешности аналитических весов, что подтверждает безотходность способа и его экологическую безопасность.

Способ получения нитрида галлия, включающий загрузку нитрида лития в реакционную камеру, вакуумирование, герметизацию, термообработку и удаление побочных продуктов, отличающийся тем, что камеру выполняют в виде двух соединенных емкостей, в первую емкость загружают хлор в герметичном сосуде и галлий, а во вторую - нитрид лития с аммиаком в герметичном сосуде, камеру вакуумируют, вскрывают сосуд с хлором и нагревают первую емкость до температуры 210-220°С, затем вскрывают сосуд с нитридом лития и аммиаком, и нагревают вторую емкость до 850-870°С, после чего емкости герметизируют и разделяют.



 

Похожие патенты:

Изобретение относится к получению порошка нитрида галлия, который может быть использован в качестве компонента керамики при изготовлении полупроводниковых элементов конструкций.

Изобретение относится к квантовой электронике и лазерной технологии и может быть использовано в ядерной физике для разделения изотопов. .
Изобретение относится к области материаловедения. .

Изобретение относится к области неорганической химии, конкретно к тройным теллуридам железа и индия, которые могут найти применение как ферромагнитные материалы при создании постоянных магнитов, а также в многофункциональных приборах и интегральных схемах.
Изобретение относится к неорганической химии. .
Изобретение относится к области технологии получения и легирования неорганических веществ и может быть использовано в микроэлектронике, полупроводниковом приборостроении.

Изобретение относится к химической технологии композиционных материалов на основе оксидов для выращивания монокристаллов, в частности лантангаллиевого силиката (ЛГС).

Изобретение относится к области неорганической химии, а именно к способам получения новой плотной сверхтвердой модификации нитрида кремния, имеющей кубическую структуру шпинели ( - Si3N4).

Изобретение относится к получению порошка нитрида галлия, который может быть использован в качестве компонента керамики при изготовлении полупроводниковых элементов конструкций.

Изобретение относится к способу синтеза нитрида кальция. .

Изобретение относится к производству тугоплавких материалов и может быть использовано в аэрокосмической, химико-металлургической, инструментальной и других отраслях промышленности для синтеза порошков нитридов элементов, применяемых для изготовления изделий, обладающих высокой термостойкостью, твердостью, износостойкостью, эрозионной стойкостью, стойкостью в агрессивных средах, стабильностью физических свойств в широких температурных диапазонах и используемых в различных областях техники.
Изобретение относится к производству искусственных высокотвердых материалов, а именно к синтезу кубического нитрида бора, применяемого для изготовления абразивных инструментов на различных связках, а также лезвийного инструмента для металлообработки и гексагонального нитрида бора, используемого для синтеза кубического нитрида бора, в качестве высокотемпературной смазки, теплоизоляции, в косметических целях и т.д.

Изобретение относится к способам получения нитрида бора графитоподобной гексагональной структуры с индексом графитации "g"=1,7-2,5, который может быть использован для получения сверхтвердых кристаллических модификаций нитрида бора, в частности эльбора.

Изобретение относится к способам получения поликристаллических сверхтвердых материалов (СТМ) на основе плотных модификаций нитрида бора - кубического (КНБ) и вюрцитоподобного (ВНБ), которые могут быть использованы в качестве материалов для деталей аппаратов высокого давления, а также в инструментах для обработки различного рода износостойких материалов, в первую очередь при точении термообработанных сталей, серых и высокопрочных чугунов, никелевых сплавов, износостойких наплавок, вольфрамосодержащих твердых сплавов, железобетона, камня, пластмасс.

Изобретение относится к способам получения (синтеза) кубического нитрида бора (КНБ) в виде кристаллов при высоких давлении и температуре в области термодинамической стабильности КНБ и может быть использовано преимущественно в инструментальной отрасли промышленности.
Изобретение относится к порошковой технологии, а именно к получению материалов, содержащих нитриды металлов
Наверх