Кольцевая камера сгорания газотурбинного двигателя

Кольцевая камера сгорания газотурбинного двигателя содержит наружную и внутреннюю осевые стенки и дно камеры, соединяющее между собой указанные осевые стенки. Дно камеры содержит, с одной стороны, множество отверстий впрыска, предназначенных для обеспечения, по меньшей мере, впрыска топлива внутрь камеры сгорания, и, с другой стороны, множество каналов, обеспечивающих, по меньшей мере, начало образования охлаждающей воздушной пленки вдоль горячей внутренней поверхности наружной осевой стенки, а также начало образования охлаждающей воздушной пленки вдоль горячей внутренней поверхности внутренней осевой стенки. Наружная и внутренняя осевые стенки выполнены перфорированными практически по всей их длине для обеспечения усиления охлаждающих воздушных пленок. Каждая из указанных наружной и внутренней осевых стенок содержит в своей передней части первую зону отверстий, выполненных с возможностью обеспечения подачи охлаждающего воздуха противотоком внутрь камеры сгорания. Изобретение обеспечивает высокую однородность температур стенок камеры сгорания и увеличение толщины охлаждающих воздушных пленок, образующихся начиная от дна камеры сгорания. 9 з.п. ф-лы, 1 ил.

 

Область техники

Настоящее изобретение, в основном, касается области изготовления кольцевых камер сгорания газотурбинных двигателей и, в частности, средств обеспечения тепловой защиты этих камер сгорания.

Предшествующий уровень техники

Обычно кольцевая камера сгорания газотурбинного двигателя содержит наружную осевую стенку и внутреннюю осевую стенку, причем эти стенки расположены коаксиально и соединены между собой дном камеры.

На уровне этого дна камеры, имеющего также кольцевую форму, камера сгорания содержит отверстия для впрыска топлива, каждое из которых предназначено для установки топливной форсунки с целью обеспечения реакций сгорания внутри этой камеры сгорания. Кроме того, необходимо отметить, что эти форсунки выполнены с возможностью подачи, по меньшей мере, части воздуха, предназначенного для сгорания, которое происходит в первичной зоне камеры сгорания, расположенной перед вторичной зоной, называемой зоной разбавления.

В этой связи следует отметить, что, кроме обеспечения подачи воздуха, необходимого для реакций горения внутри первичной зоны камеры сгорания, для последней также требуется разбавляющий воздух, подаваемый через отверстия для разбавляющего воздуха, выполненные в наружной и внутренней осевых стенках, а также охлаждающий воздух, предназначенный для охлаждения всех элементов конструкции камеры сгорания.

Согласно классическому варианту выполнения, известному из предшествующего уровня техники, дно камеры сгорания содержит множество каналов, обеспечивающих прохождение охлаждающего воздуха внутрь камеры сгорания. Указывается, что эти каналы могут быть выполнены на отражателях, установленных на дне камеры, причем эти отражатели, называемые также чашами или тепловыми экранами, предназначены для обеспечения защиты от теплового излучения.

Эти каналы обычно выполняют с возможностью обеспечения создания охлаждающей воздушной пленки вдоль горячей внутренней поверхности наружной осевой стенки, а также создания охлаждающей воздушной пленки вдоль горячей внутренней поверхности внутренней осевой стенки.

Кроме того, для усиления действия этих охлаждающих воздушных пленок, образующихся на входе наружной и внутренней осевых стенок, последние выполняют с возможностью реализации в них множества отверстий практически по всей их длине. Таким образом, воздух, охлаждающий осевые стенки, может подаваться внутрь камеры сгорания вдоль этих осевых стенок для обеспечения относительно равномерного и эффективного охлаждения. Естественно, что это множество отверстий выполняется по всей периферии указанных осевых стенок и практически по всей их длине.

Вместе с тем, несмотря на то, что камеры сгорания такого типа являются достаточно эффективными, они все же имеют некоторые существенные недостатки, связанные с проблемой однородности температур осевых стенок.

Действительно, равномерность в окружном направлении охлаждающих воздушных пленок, образуемых на уровне дна камеры, оставляет желать лучшего, особенно, когда дно камеры содержит отражатели. Кроме того, характеристики этих пленок могут значительно меняться с течением времени, в основном, по причине постепенной деформации конструкционных элементов дна камеры.

Следовательно, когда камера сгорания подвергается высоким тепловым воздействиям, эти недостатки могут приводить к возникновению горячих точек, в частности на уровне передней части наружной и внутренней осевых стенок, при этом появление указанных горячих точек естественным образом приводит к существенному сокращению срока службы камеры сгорания.

С другой стороны, указывается, что во время испытаний на такой камере сгорания отмечалось наличие горячей околостенной зоны на уровне первых круговых рядов отверстий на входе каждой из наружной и внутренней осевых стенок.

Проведенные испытания также показали, что возникновение таких горячих околостенных зон в значительной степени является результатом задержек появления охлаждающих воздушных пленок, образующихся на уровне дна камеры между данной осевой стенкой и слоем охлаждающего воздуха, проходящего через множество отверстий, выполненных в этой же стенке.

Следовательно, становится ясным, что конструкция этих камер сгорания не обеспечивает достаточной однородности температур осевых стенок.

Наконец, указывается, что наличие первичных отверстий и отверстий для разбавляющего воздуха, далее именуемых как отверстия разбавления в наружной и внутренней осевых стенках, является причиной локального всасывания охлаждающих воздушных пленок. Следствием этого является резкое снижение адиабатической эффективности на выходе этих отверстий и появление дополнительных горячих точек.

Сущность изобретения

Задачей настоящего изобретения является создание кольцевой камеры сгорания газотурбинного двигателя, которая позволяет, по меньшей мере, частично устранить вышеупомянутые недостатки вариантов выполнения из предшествующего уровня техники.

В частности, задачей настоящего изобретения является создание кольцевой камеры сгорания газотурбинного двигателя, конструкция которой обеспечивает более однородные температуры осевых стенок по сравнению с вариантами выполнения из предшествующего уровня техники.

В этой связи объектом настоящего изобретения является кольцевая камера сгорания газотурбинного двигателя, содержащая наружную осевую стенку, внутреннюю осевую стенку и дно камеры, соединяющее между собой осевые стенки, при этом дно камеры содержит, с одной стороны, множество форсуночных отверстий, предназначенных, по меньшей мере, для обеспечения впрыска топлива внутрь камеры сгорания, и, с другой стороны, множество каналов, обеспечивающих, по меньшей мере, образование охлаждающей воздушной пленки вдоль горячей внутренней поверхности наружной осевой стенки, а также охлаждающей воздушной пленки вдоль горячей внутренней поверхности внутренней осевой стенки, при этом в наружной и внутренней осевых стенках выполняют множество отверстий, обеспечивающих повышение эффективности охлаждающих воздушных пленок. В соответствии с настоящим изобретением каждая из наружной и внутренней осевых стенок в передней части содержит первую зону отверстий, выполненных с возможностью обеспечения подачи охлаждающего воздуха противотоком внутрь камеры сгорания.

Предпочтительно специальная конструкция камеры сгорания обеспечивает высокую однородность температур осевых стенок, а также значительное увеличение толщины охлаждающих воздушных пленок, образующихся начиная от дна камеры, причем это увеличение толщины происходит вблизи последнего.

Действительно, подача охлаждающего воздуха противотоком на уровне передней части наружной и внутренней осевых стенок приводит к исчезновению горячих околостенных зон, образующихся в камерах сгорания из предшествующего уровня техники на уровне первых рядов отверстий каждой из этих наружной и внутренней осевых стенок.

Точно так же отмечается значительное сокращение проблем, связанных с недостаточной однородностью в окружном направлении охлаждающих воздушных пленок, образующихся у дна камеры, а также проблем, связанных с изменением характеристик этих пленок с течением времени, благодаря добавлению таких встречных потоков внутри камеры сгорания.

Следовательно, реализация специальной конструкции позволяет выполнить камеру сгорания с повышенным сроком службы и позволяет снизить напор охлаждающего воздуха, что приводит к непосредственному улучшению температурных эпюр и снижает загрязнение окружающей среды.

В целом отмечается, что вариант комбинирования реализации множества отверстий, обеспечивающих встречный поток, и множества отверстий, обеспечивающих прямой поток, позволяет генерировать охлаждающую пленку, отличающуюся высокой эффективностью на всей поверхности данной осевой стенки, как в окружном направлении, так и в продольном направлении.

Предпочтительно, когда каждое отверстие первой зоны наружной осевой стенки выполнено таким образом, что в осевом полусечении значение угла, образованного между локальным тангенциальным направлением наружной осевой стенки в этом полусечении и основным направлением отверстия в этом же полусечении, находится в пределах от 30 до 45°. Точно так же, каждое отверстие первой зоны внутренней осевой стенки выполнено таким образом, что в осевом полусечении значение угла, образованного между локальным тангенциальным направлением внутренней осевой стенки в этом полусечении и основным направлением отверстия в этом же полусечении, находится в пределах от 30 до 45°.

Предпочтительно каждая из наружной и внутренней осевых стенок на выходе первой зоны отверстий содержит вторую зону отверстий, выполненных с возможностью подачи охлаждающего воздуха противотоком внутрь камеры сгорания.

При такой конструкции можно предусмотреть, чтобы каждая из наружной и внутренней осевых стенок между первой зоной отверстий и второй зоной отверстий содержала переходную зону отверстий, предназначенную для обеспечения постепенного изменения направления подачи охлаждающего воздуха внутрь камеры сгорания.

В случае, когда дно камеры содержит между головками [форсунок] промежуточную стенку, можно предусмотреть, чтобы последняя от входа к выходу содержала первую зону отверстий, выполненных с возможностью подачи охлаждающего воздуха противотоком внутрь камеры сгорания, переходную зону отверстий и вторую зону отверстий, выполненных с возможностью подачи охлаждающего воздуха прямым потоком внутрь этой камеры сгорания.

Предпочтительно также выполнить конструкцию камеры сгорания таким образом, чтобы каждая из наружной и внутренней осевых стенок содержала множество первичных отверстий и отверстий разбавления, при этом на выходе каждого из этих первичных отверстий, а также на выходе каждого из этих отверстий разбавления выполняют локальную зону отверстий, выполненных с возможностью локальной подачи охлаждающего воздуха противотоком внутрь камеры сгорания.

Предпочтительно, когда наличие этих локальных зон отверстий обеспечивает исчезновение горячих точек, возникающих в вариантах из предшествующего уровня техники, на выходе каждого из первичных отверстий и отверстий разбавления.

Краткое описание чертежей

Описание изобретения изложено со ссылками на чертеж, являющийся частичным изображением в осевом полуразрезе кольцевой камеры сгорания газотурбинного двигателя в соответствии с предпочтительным вариантом выполнения настоящего изобретения, где частично изображена кольцевая камера 1 сгорания газотурбинного двигателя, содержащая наружную осевую стенку 2, а также внутреннюю осевую стенку 4, при этом эти обе стенки 2 и 4 расположены коаксиально вдоль основной продольной оси 6 камеры 1, причем эта ось 6 соответствует также основной продольной оси газотурбинного двигателя.

Осевые стенки 2 и 4 соединены между собой дном 8 камеры, которое в описанном предпочтительном варианте выполнения настоящего изобретения содержит головку 10 рабочего режима, а также головку 12 взлетного режима. Как показано на чертеже, головка 12 взлетного режима смещена относительно головки 10 рабочего режима в осевом направлении вниз по потоку и в радиальном направлении в наружную сторону. Кроме того, эти головки 10 и 12, соединенные между собой промежуточной стенкой 19, оборудованы соответственно отражателем 14 и отражателем 16. Само собой разумеется, что дно 8 камеры может иметь любую другую известную специалисту конструкцию, оставаясь в рамках настоящего изобретения, такую как конструкция, при которой оно не содержит отражателей.

В каждом из отражателей 14 и 16 дна 8 камеры выполнено множество отверстий 18 впрыска, отстоящих друг от друга на определенном угловом расстоянии. Каждое из этих отверстий 18 впрыска выполнено с возможностью взаимодействия с топливной форсункой 20 для обеспечения реакций горения внутри этой камеры сгорания 1 (при этом отверстия 18 впрыска отражателей 14 и 16 выполнены в шахматном порядке, а на чертеже, являющимся изображением в осевом полуразрезе, показаны только отверстие 18 впрыска и форсунка 20 головки 12 взлетного режима).

При этом необходимо уточнить, что эти форсунки 20 выполнены также с возможностью подачи, по меньшей мере, части воздуха, предназначенного для обеспечения процесса горения, который происходит в первичной зоне 22, расположенной в передней части камеры сгорания 1. Кроме того, необходимо также отметить, что воздух, предназначенный для обеспечения процесса горения, может также подаваться внутрь камеры 1 через первичные отверстия 24, выполненные вокруг наружной 2 и внутренней 4 осевых стенок. Как показано на чертеже, первичные отверстия 24 выполнены перед множеством отверстий 26 разбавления, причем последние также выполнены вокруг наружной 2 и внутренней 4 осевых стенок и, в основном, предназначены для питания воздухом зоны 28 разбавления, расположенной на выходе первичной зоны 24,

Кроме того, необходимо уточнить, что другая часть воздуха, подаваемого в камеру сгорания 1, является охлаждающим воздухом D, в основном, предназначенным для охлаждения горячих внутренних поверхностей 30 и 32 наружной 2 и внутренней 4 осевых стенок.

Для этого отражатель 14 головки 10 рабочего режима содержит канал 34 для подачи части потока охлаждающего воздуха D внутрь камеры сгорания 1, выполненный рядом с внутренней осевой стенкой 4.

Таким образом, канал 34 обеспечивает образование охлаждающей воздушной пленки D1 вдоль горячей внутренней поверхности 32 внутренней осевой стенки 4.

Точно так же отражатель 16 головки 12 взлетного режима содержит канал 36, обеспечивающий подачу другой части потока охлаждающего воздуха D внутрь камеры 1 сгорания и выполненный рядом с наружной осевой стенкой 2. В этой конструкции канал 36 обеспечивает образование охлаждающей воздушной пленки D2 вдоль горячей внутренней поверхности 30 наружной осевой стенки 2.

Для усиления этих охлаждающих воздушных пленок D1 и D2 наружную 2 и внутреннюю 4 осевые стенки выполняют перфорированными практически по всей их длине. Другими словами, эти стенки 2 и 4 содержат множество отверстий 38, каждое из которых предпочтительно имеет цилиндрическую форму, круглое сечение и диаметр, находящийся в пределах от 0,3 до 0,6 мм.

Как известно из предшествующего уровня техники, отверстия 38 распределяют вокруг данной осевой стенки и практически вдоль этой же осевой стенки. Таким образом, становится возможным обеспечить равномерную подачу воздуха по всей поверхности осевой стенки как в окружном направлении, так и в продольном направлении.

Как показано также на чертеже, внутренняя осевая стенка 4 содержит первую зону 40 отверстий 38. Эта первая зона 40, образованная круговыми рядами отверстий 38, расположенными в самой передней части стенки 4, выполнена таким образом, чтобы охлаждающий воздух подавался противотоком внутрь камеры 1 сгорания для усиления охлаждающей воздушной пленки D1, поступающей от дна 8 камеры.

Так, для каждого отверстия 38 первой зоны 40 в полусечении, показанном на чертеже, значение угла А2, образованного между локальным тангенциальным направлением 42 внутренней осевой стенки 4 в этом полусечении и основным направлением 44 отверстия 38 в этом полусечении, находится в пределах от 30 до 45°. Проще говоря, каждое отверстие 38 можно определить как отверстие, образующее с внутренней осевой стенкой 4 угол, находящийся в пределах от 30 до 45°.

Необходимо уточнить, что первая зона 40 предпочтительно образована количеством круговых рядов отверстий 38 от одного до десяти, при этом указанные ряды соответствуют первым передним рядам внутренней осевой стенки 4.

За первой зоной 40 отверстий 38 находится вторая зона 46 отверстий 38, выполненных таким образом, чтобы обеспечивать подачу охлаждающего воздуха противотоком в камеру сгорания 1.

В этой второй зоне 46 каждое отверстие 38 выполнено таким образом, чтобы в осевом полусечении значение угла А4, образованного между локальным тангенциальным направлением 48 внутренней осевой стенки 4 в этом полусечении и основным направлением 50 отверстия 38 в этом же полусечении, находилось в пределах от 20 до 90°. В данном случае каждое отверстие 38 тоже может быть определено как отверстие, образующее с внутренней осевой стенкой 4 угол, находящийся в пределах от 20 до 90°.

В описанном предпочтительном варианте выполнения настоящего изобретения вторая зона 46, выполненная в виде множества круговых рядов отверстий 38, расположена практически вплоть до заднего конца внутренней стенки 4.

Кроме того, необходимо отметить, что первая и вторая зоны 40 и 46 внутренней осевой стенки 4 отделены друг от друга переходной зоной 52 отверстий 38, которые выполнены таким образом, чтобы их наклон обеспечивал постепенный переход, от входа к выходу, противотока охлаждающего воздуха в прямой поток охлаждающего воздуха.

Следует уточнить, что переходная зона 52 предпочтительно выполнена в виде круговых рядов отверстий 38 в количестве от одного до трех рядов. В качестве примера можно указать, что наклон отверстий 38 этой переходной зоны 52 может постепенно меняться, от входа к выходу, от -30 до +30°.

Аналогично на чертеже показано, что наружная осевая стенка 2 содержит первую зону 54 отверстий 38. Эта первая зона 54, состоящая из круговых рядов отверстий 38, находящихся в самой передней части стенки 2, выполнена таким образом, чтобы обеспечить подачу охлаждающего воздуха противотоком внутрь камеры 1 сгорания для усиления охлаждающей воздушной пленки D2, образующейся начиная от дна 8 камеры.

Таким образом, для каждого отверстия 38 первой зоны 54 в осевом полусечении, показанном на чертеже, значение угла А1, образованного между локальным тангенциальным направлением 56 наружной осевой стенки 2 в этом полусечении и основным направлением 58 отверстия 38 в этом полусечении, находится в пределах примерно от 30 до 45°.

Необходимо уточнить, что первая зона 54 предпочтительно состоит из количества круговых рядов отверстий 38, составляющего от одного до десяти, причем эти ряды также соответствуют первым передним рядам наружной осевой стенки 2.

На выходе первой зоны 54 отверстий 38 находится вторая зона 60 отверстий 38, выполненных таким образом, чтобы обеспечить подачу охлаждающего воздуха противотоком внутрь камеры 1 сгорания.

В этой второй зоне 60 каждое отверстие 38 выполнено таким образом, чтобы в осевом полусечении значение угла A3, образованного между локальным тангенциальным направлением 62 наружной осевой стенки 2 в этом полусечении и основным направлением 64 отверстия 38 в этом же полусечении, находилось в пределах примерно от 20 до 90°.

В описанном предпочтительном варианте выполнения настоящего изобретения вторая зона 60, выполненная в виде множества круговых рядов отверстий 38, расположена практически вплоть до заднего конца внутренней стенки 4.

Кроме того, необходимо отметить, что первая и вторая зоны 54 и 60 наружной осевой стенки 2 также отделены друг от друга переходной зоной 66 отверстий 38, которые выполнены таким образом, чтобы их наклон обеспечивал постепенный переход, от входа к выходу, противотока охлаждающего воздуха в прямой поток охлаждающего воздуха.

Необходимо уточнить, что переходная зона 66 предпочтительно образована количеством круговых рядов отверстий 38, находящимся в пределах от одного до трех. В качестве примера можно указать, что так же, как и в переходной зоне 52 внутренней стенки 4, наклон отверстий 38 этой переходной зоны 66 может постепенно меняться, от входа к выходу, от -30 до +30°.

Необходимо отметить, что в предшествующем описании термин "локальное тангенциальное направление" может обозначать линию, практически параллельную двум участкам прямых, символизирующим стенку в осевом полусечении рядом с рассматриваемым отверстием.

Точно так же термин "основное направление отверстия" может обозначать прямую, практически параллельную двум сегментам прямых, символизирующим рассматриваемое отверстие в этом же осевом полусечении. В этой связи следует отметить, что основные направления отверстий 38 соответствуют их основным осям в случае, когда эти отверстия 38 пересекаются в диаметральном направлении плоскостью сечения.

Предпочтительно локальная зона 70 отверстий 38 выполнена за каждым из первичных отверстий 24 и отверстий 26 разбавления. Эти локальные зоны 70 выполнены таким образом, чтобы обеспечить локальную подачу охлаждающего воздуха противотоком внутрь камеры сгорания 1. Таким образом, отверстия 38 этих локальных зон 70 выполняют практически аналогично отверстиям 38 первых зон 40 и 54.

Вместе с тем, в отличие от первой и второй зон 40, 46, 54 и 60, а также от переходных зон 52 и 66, локальные зоны 70 не расположены по всей периферии осевых стенок 2 и 4, а только на ограниченной круговой длине. Кроме того, за локальными зонами 70 не обязательно выполняют переходные зоны, обеспечивающие постепенное выпрямление направления подачи охлаждающего воздуха внутрь камеры 1 сгорания.

В качестве примера можно указать, что каждую локальную зону 70 отверстий 38 можно выполнять в окружном направлении на длине, составляющей от одной до двух длин диаметра первичного отверстия 24 или отверстия 26 разбавления, за которым она находится, и что каждая из этих локальных зон содержит количество рядов отверстий 38, находящееся в пределах от одного до пяти.

Само собой разумеется, что именно описанные выше отверстия 38 образуют перфорированные внутреннюю 4 и наружную 2 стенки. Эти отверстия 38 позволяют оптимально использовать комбинацию противоточного и прямоточного нагнетания воздуха и, следовательно, обеспечивают оптимальную общую эффективность охлаждения.

Кроме того, как показано на чертеже, отражатель 14 головки 10 рабочего режима содержит канал 72, обеспечивающий подачу части потока охлаждающего воздуха D внутрь камеры 1 сгорания рядом с промежуточной стенкой 19.

Таким образом, канал 72 обеспечивает образование охлаждающей воздушной пленки D3 вдоль горячей внутренней поверхности 74 промежуточной стенки 19, выполненной, в основном, в осевом направлении.

Следовательно, эту промежуточную стенку 19 также выполняют перфорированной с возможностью усиления этой охлаждающей воздушной пленки D3.

Кроме того, для обеспечения однородности температуры промежуточной стенки 19 она содержит, от входа к выходу, первую зону 76 отверстий 38, выполненных таким образом, чтобы обеспечить подачу охлаждающего воздуха противотоком внутрь камеры 1 сгорания, переходную зону 78 отверстий 38 и вторую зону 80 отверстий 38, выполненную таким образом, чтобы обеспечить подачу охлаждающего воздуха противотоком внутрь камеры 1 сгорания.

Само собой разумеется, что специалист может вносить различные модификации в конструкцию кольцевой камеры 1 сгорания, описанной выше, исключительно в качестве не ограничительного примера.

1. Кольцевая камера сгорания газотурбинного двигателя, содержащая наружную осевую стенку (2), внутреннюю осевую стенку (4) и дно (8) камеры, соединяющее между собой указанные осевые стенки (2, 4), при этом дно (8) камеры содержит с одной стороны множество отверстий (18) впрыска, предназначенных для обеспечения, по меньшей мере, впрыска топлива внутрь камеры (1) сгорания, и с другой стороны множество каналов (34, 36, 72), обеспечивающих, по меньшей мере, начало образования охлаждающей воздушной пленки (D2) вдоль горячей внутренней поверхности (30) наружной осевой стенки, а также начало образования охлаждающей воздушной пленки (D1) вдоль горячей внутренней поверхности (32) внутренней осевой стенки (4), при этом указанные наружная (2) и внутренняя (4) осевые стенки выполнены перфорированными практически по всей их длине для обеспечения усиления охлаждающих воздушных пленок (D1, D2), отличающаяся тем, что каждая из указанных наружной (2) и внутренней (4) осевых стенок содержит в своей передней части первую зону (54, 40) отверстий (38), выполненных с возможностью обеспечения подачи охлаждающего воздуха противотоком внутрь камеры (1) сгорания.

2. Кольцевая камера сгорания по п.1, отличающаяся тем, что каждое отверстие (38) первой зоны (54) наружной осевой стенки (2) выполнено таким образом, что в осевом полусечении значение угла (А1), образованного между локальным тангенциальным направлением (56) наружной осевой стенки (2) в этом полусечении и основным направлением (58) отверстия (38) в этом же полусечении, находится в пределах примерно от 30 до 45° и тем, что каждое отверстие (38) первой зоны (40) внутренней осевой стенки (4) выполнено таким образом, что в осевом полусечении значение угла (А2), образованного между локальным тангенциальным направлением (42) внутренней осевой стенки (4) в этом полусечении и основным направлением (44) отверстия (38) в этом же полусечении, находится в пределах примерно от 30 до 45°.

3. Кольцевая камера сгорания по п.1 или 2, отличающаяся тем, что первая зона (54, 40) отверстий (38) каждой из указанных наружной (2) и внутренней (4) осевых стенок содержит количество круговых рядов от одного до десяти.

4. Кольцевая камера сгорания по любому из предыдущих пунктов, отличающаяся тем, что каждая из указанных наружной (2) и внутренней (4) осевых стенок за первой зоной (54, 40) отверстий (38) содержит вторую зону (60, 46) отверстий (38), выполненных с возможностью обеспечения подачи охлаждающего воздуха противотоком внутрь камеры (1) сгорания.

5. Кольцевая камера сгорания (1) по п.4, отличающаяся тем, что каждое отверстие (38) второй зоны (60) наружной осевой стенки (2) выполнено таким образом, что в осевом полусечении значение угла (A3), образованного между локальным тангенциальным направлением (62) наружной осевой стенки (2) в этом полусечении и основным направлением (64) отверстия (38) в этом же полусечении, находится в пределах примерно от 20 до 90° и тем, что каждое отверстие (38) второй зоны (46) внутренней осевой стенки (4) выполнено таким образом, что в осевом полусечении значение угла (А4), образованного между локальным тангенциальным направлением (48) внутренней осевой стенки (4) в этом полусечении и основным направлением (50) отверстия (38) в этом же полусечении, находится в пределах примерно от 20 до 90°.

6. Кольцевая камера сгорания по п.5, отличающаяся тем, что каждая из указанных наружной (2) и внутренней (4) осевых стенок содержит между первой зоной (54, 40) и второй зоной (60, 46) отверстий (38) переходную зону (66, 52) отверстий (38).

7. Кольцевая камера сгорания по п.6, отличающаяся тем, что переходная зона (66, 52) отверстий (38) каждой из указанных наружной (2) и внутренней (4) осевых стенок содержит количество круговых рядов от одного до трех.

8. Кольцевая камера сгорания по любому из предыдущих пунктов, отличающаяся тем, что дно (8) камеры между головками содержит промежуточную стенку (19), содержащую от входа к выходу первую зону (76) отверстий (38), выполненных с возможностью обеспечения подачи охлаждающего воздуха противотоком внутрь камеры (1) сгорания, переходную зону (78) отверстий (38) и вторую зону (80) отверстий (38), выполненных с возможностью обеспечения подачи охлаждающего воздуха противотоком внутрь камеры (1) сгорания.

9. Кольцевая камера сгорания по любому из предыдущих пунктов, отличающаяся тем, что каждая из наружной (2) и внутренней (4) осевых стенок содержит множество первичных отверстий (24) и отверстий (26) разбавления, при этом на выходе каждого из указанных первичных отверстий (24), а также на выходе каждого из указанных отверстий (26) разбавления выполнена локальная зона (70) отверстий (38), выполненных с возможностью обеспечения подачи охлаждающего воздуха противотоком внутрь камеры (1) сгорания.

10. Кольцевая камера сгорания по п.9, отличающаяся тем, что каждая локальная зона (70) отверстий (38) выполнена в окружном направлении по длине, составляющей от одной до двух длин диаметра первичного отверстия (24) или отверстия (26) разбавления, за которым она находится.



 

Похожие патенты:

Изобретение относится к устройствам подогрева воздуха, подаваемого на вход авиационного газотурбинного двигателя, установленного на испытательном стенде для имитации условий работы двигателя в полете.

Изобретение относится к газотурбинной технике, в частности к кольцевым камерам сгорания газотурбинных двигателей. .

Изобретение относится к газотурбинным двигателям (ГТД) и может быть использовано в основных и межтурбинных камерах сгорания авиационных ГТД и наземных ГТУ

Изобретение относится к газотурбинным двигателям (ГТД) и может быть использовано в камерах сгорания авиационных ГТД и наземных установок

Изобретение относится к теплоэнергетике и может быть использовано для пламенного непрерывного сжигания подготовленных топливовоздушных смесей (ТВС) газообразных топлив в камерах сгорания газотурбинных двигателей (ГТД), газотурбинных установок (ГТУ), печах, котлах и других типах энергоустановок
Наверх