Криогенный деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для сварных конструкций космической техники, работающих при криогенных температурах. Сплав содержит следующие компоненты, мас.%: магний 4,1-4,9, титан 0,01-0,04, бериллий 0,0001-0,005, цирконий 0,05-0,12, скандий 0,17-0,30, церий 0,0001-0,0009, марганец 0,19-0,35, хром 0,01-0,05, группа элементов, содержащая железо и кремний - 0,06-0,25, алюминий - остальное, при этом величина отношения содержания железа к содержанию кремния должна быть не меньше единицы. Получают сплав, обладающий повышенными характеристиками прочности, а также прочности сварных соединений при криогенных температурах, что позволяет снизить вес сварных конструкций, изготавливаемых из предлагаемого сплава. 2 табл.

 

Предлагаемое изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для сварных конструкций, работающих при криогенных температурах.

Известен криогенный деформируемый термически неупрочняемый свариваемый сплав на основе алюминия следующего химического состава (мас.%):

Магний4,45
Марганец0,8
Хром0,10
АлюминийОстальное

(см. Ф.Г.Нельсон, Дж.Г.Кауфман, Е.Т.Уэндерер. В кн.: Механические свойства конструкционных материалов при низких температурах. М., Металлургия, 1983, с.176).

Однако существующий сплав имеет низкие прочностные свойства.

Известен криогенный деформируемый термически неупрочняемый свариваемый сплав на основе алюминия, предназначенный для использования в виде деформированных полуфабрикатов в качестве конструкционного материала (см. патент RU №2085607, М.Кл. С22С 21/06, 1997 год), следующего химического состава (мас.%) прототип:

Магний3,9-4,9
Титан0,01-0,1
Бериллий0,0001-0,005
Цирконий0,05-0,15
Скандий0,20-0,50
Церий0,001-0,004
АлюминийОстальное

Недостатком известного сплава является низкая прочность сварных соединений при криогенных температурах.

Предлагается криогенный деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, титан, бериллий, цирконий, скандий и церий, который дополнительно содержит марганец, хром и группу элементов, включающую железо и кремний, при следующем соотношении компонентов (мас.%):

Магний4,1-4,9
Титан0,01-0,04
Бериллий0,0001-0,005
Цирконий0,05-0,12
Скандий0,17-0,30
Церий0,0001-0,0009
Марганец0,19-0,35
Хром0,01-0,05
Группа элементов,
включающая железо
и кремний0,06-0,25
АлюминийОстальное

при этом величина отношения содержания железа к содержанию кремния должна быть не меньше единицы.

Предлагаемый сплав отличается от известного тем, что он дополнительно содержит марганец, хром и группу элементов, включающую железо и кремний, и компоненты взяты в следующем соотношении (мас.%):

Магний4,1-4,9
Титан0,01-0,04
Бериллий0,0001-0,005
Цирконий0,05-0,12
Скандий0,17-0,30
Церий0,0001-0,0009
Марганец0,19-0,35
Хром0,01-0,05
Группа элементов,
включающая железо
и кремний0,06-0,25
АлюминийОстальное

при этом величина отношения содержания железа к содержанию кремния должна быть не меньше единицы.

Технический результат - повышение характеристик прочности сплава и, как следствие, повышение прочности сварных соединений при криогенных температурах, что позволит снизить вес и соответственно повысить характеристики весовой отдачи сварных конструкций летательных аппаратов, работающих на криогенном топливе.

При предлагаемом содержании и соотношении компонентов в предлагаемом сплаве за счет вторичных выделений мелкодисперсных интерметаллидов, содержащих в своем составе алюминий, скандий, цирконий и другие переходные металлы, входящие в состав сплава, и оптимизации морфологии первичных интерметаллидов кристаллизационного происхождения, содержащих, в основном, алюминий, железо и кремний, обеспечивается высокий уровень прочностных свойств сплава и сварных соединений. В то же время достаточно пластичная матрица, представляющая собой, главным образом, твердый раствор магния и марганца в алюминии, за счет высокого запаса пластичности сохраняет необходимый уровень пластических свойств и высокую работоспособность сплава и сварных соединений при криогенных температурах.

Пример

Получили предлагаемый сплав из шихты, состоящей из алюминия А99, магния МГ95, двойных лигатур алюминий-титан, алюминий-бериллий, алюминий-цирконий, алюминий-скандий, алюминий-церий, алюминий-марганец, алюминий-железо и силумина (составы 1, 2), а также состав 3 из шихты, состоящей из отходов составов 1 и 2.

Сплав готовили в электрической плавильной печи и методом полунепрерывного литья отливали плоские слитки сечением 90×220 мм. Составы предлагаемого сплава приведены в табл.1.

Слитки гомогенизировали, подвергали механической обработке, после чего на стане горячей прокатки при 400°С прокатывали до толщины 7,5 мм, затем на стане холодной прокатки - до толщины 3 мм. Холоднокатаные заготовки отжигали в электрической печи с воздушной циркуляцией и правили на роликоправильной машине.

Часть полученных таким образом отожженных листов толщиной 3 мм подвергали автоматической аргоно-дуговой сварке вольфрамовым электродом с присадочной проволокой того же состава, что и основной металл. Сварной шов располагали вдоль волокна. Материалом для испытаний служили отожженные листы толщиной 3 мм и сварные пластины. Из листов и сварных пластин вырезали стандартные поперечные образцы, которые испытывали на растяжение при криогенных температурах. Определяли механические свойства листов: предел прочности σв, предел текучести σ0,2, относительное удлинение δ, а также предел прочности сварных соединений с усилением шва σвсв. Также проводили испытания сплава-прототипа (состав 4, табл.1). Результаты испытаний приведены в табл.2.

Как видно из табл.2, предлагаемый сплав и его сварные соединения имеют прочность на 3-15 МПа выше, чем у известного сплава при сохранении пластичности. Это позволит на 3-5% снизить вес криогенных сварных конструкций, изготавливаемых из предлагаемого сплава.

Применение предлагаемого сплава в космической технике позволит создать надежные и высокотехнологичные сварные конструкции летательных аппаратов, работающих на высокоэффективном и экологически чистом криогенном топливе. При изготовлении сварных конструкций предлагаемый сплав может использоваться также в качестве присадочного материала для сварки плавлением.

Таблица 1
Сплав№ составаХимический состав, мас.%
МагнийТитанБериллийЦирконийСкандийЦерийМарганецХромЖелезоКремнийFe/SiАлюминий
Предлагаемый14,10,010,00010,050,170,00010,190,010,030,031Остальное
24,90,040,0050,120,300,00090,350,050,150,11,5Остальное
34,50,020,0010,080,240,00050,30,030,060,051,2Остальное
Прототип44,40,10,0030,10,40,003-----Остальное
Примечание: Fe/Si - отношение содержания железа к содержанию кремния

Таблица 2
Сплав№ составаТемпература испытанийМеханические свойства отожженных листовПрочность сварных соединений
σв, МПаσ0,2, МПаδ, %σвсв, МПа
Предлагаемый177К48034836450
20К62441838480
277К49035034454
20К63042536488
377К48535035450
20К62842037485
Прототип477К47534534445
20К62141536475
Примечание: σв - предел прочности, σ0,2 - предел текучести, δ - относительное удлинение, σвсв - предел прочности сварного образца с усилением шва.

Криогенный деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, титан, бериллий, цирконий, скандий и церий, отличающийся тем, что он дополнительно содержит марганец, хром и группу элементов, включающую железо и кремний, при следующем соотношении компонентов, мас.%:

магний4,1-4,9
титан0,01-0,04
бериллий0,0001-0,005
цирконий0,05-0,12
скандий0,17-0,30
церий0,0001-0,0009
марганец0,19-0,35
хром0,01-0,05
группа элементов, содержащая железо
и кремний0,06-0,25
алюминийостальное

при этом величина отношения содержания железа к содержанию кремния должна быть не меньше единицы.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия системы алюминий-магний-кремний, применяемых для изготовления изделий на линиях скоростного резания, а также изделий, предназначенных для последующей механической обработки.

Изобретение относится к производству изделий из высокоустойчивого к повреждениям алюминиевого катаного сплава. .
Изобретение относится к области металлургии цветных металлов и может быть использовано в металлургической, машиностроительной и авиационной промышленности, в частности для производства сотовых конструкций.

Изобретение относится к области металлургии сплавов на основе алюминия на основе системы Al-Mg-Mn, применяемых для изготовления броневых полуфабрикатов и изделий из него, используемых в авиа- и судостроении, в производстве наземных бронированных транспортных средств и других объектов гражданского и специального назначения.
Изобретение относится к области металлургии сплавов, в частности к деформируемым термически упрочняемым, высокотехнологичным, коррозионно-стойким и свариваемым сплавам на основе системы Al-Mg-Si и изделиям из них.

Изобретение относится к металлургии, в частности к получению композиционных материалов с матрицей из алюминиевого сплава, армированной стальными волокнами, для изготовления элементов планера самолета, стрингерного набора, обшивки и т.д.

Изобретение относится к металлургии сплавов, в частности деформируемых термически неупрочняемых сплавов, предназначенных для использования в виде деформированных полуфабрикатов в качестве конструкционного материала.

Изобретение относится к способу изготовления конструкционных деталей самолетов из сплава алюминий-магний-литий. .

Изобретение относится к области металлургии, в частности к составам термически неупрочняемых деформируемых алюминиевых сплавов системы алюминий-магний-марганец с содержанием магния больше 3% по массе.
Изобретение относится к обладающему свариваемостью коррозионно-стойкому алюминиево-магниевому сплаву с высоким содержанием магния, содержащему в качестве важного компонента трехкомпонентную алюминий-скандий-циркониевую фазу.
Изобретение относится к области металлургии, в частности к деформируемым термически упрочняемым высокопрочным алюминиевым сплавам системы Al-Zn-Mg-Cu, предназначенным для изготовления всех видов деформируемых полуфабрикатов, в том числе и тонких листов, используемых в авиастроении, машиностроении и других областях промышленности
Изобретение относится к области металлургии и может быть использовано при производстве деформированных полуфабрикатов из термически неупрочняемых свариваемых коррозионно-стойких сплавов на основе алюминия, применяемых в качестве конструкционного и проводникового материала преимущественно в авиакосмической и атомной технике
Изобретение относится к получению высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, предназначенных для изготовления прессованных, кованых и катаных полуфабрикатов
Изобретение относится к алюминиевому сплаву, детали из которого получают литьем под давлением

Изобретение относится к алюминиевым сплавам и способу их изготовления, а конкретнее к содержащим магний высококремниевым алюминиевым сплавам, используемым в качестве конструкционных материалов, и способу их изготовления
Изобретение относится к области металлургии, в частности к содержащим бор алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании со специальными свойствами, в частности высокий уровень поглощения при нейтронном излучении. Композиционный материал содержит медь, марганец, цирконий, железо, кремний бор и имеет структуру, состоящую из алюминиевого твердого раствора и равномерно распределенных в нем фаз при следующем их соотношении в твердом растворе, в мас.%: 6-15 В4С, 2-6 Al15(Fe, Mn)3Si2, 2-6 Al20Cu2Mn3, 0,4-0,8 Al3Zr. Техническим результатом изобретения является повышение термостойкости материала к нагревам до 350°С при достаточном уровне механических свойств, составляющих: временное сопротивление (σв) - не менее 450 МПа, предел текучести (σ0,2) - не менее 400 МПа, относительное удлинение (δ) - не менее 4%, твердость не менее 2,7 ГПа. 1 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к способу изготовления полосы, выполненной из сплава Al-Mg-Si, в котором слиток для прокатки отливается из сплава Al-Mg-Si, подвергается гомогенизации, слиток для прокатки, доведенный до температуры горячей прокатки, подвергается горячей прокатке и затем при необходимости холодной прокатке до его конечной толщины, при этом горячая полоса имеет температуру не выше 130°С непосредственно на выходе с последнего прохода горячей прокатки, преимущественно температуру не выше 100°С, после чего полоса сматывается при этой или более низкой температуре. Способ позволяет производить алюминиевые полосы из сплава Al-Mg-Si, которые обладают более высоким относительным удлинением и, следовательно, более высокими степенями деформации при изготовлении структурированных металлических листов. 4 н. и 11 з.п. ф-лы, 5 табл., 4 ил.

Изобретение относится к алюминиевому сплаву для производства подложек для офсетных печатных форм. Алюминиевый сплав содержит следующие компоненты, в мас.%: 0,2% ≤ Fe ≤0,5%, 0,41% ≤ Mg ≤ 0,7%, 0,05% ≤ Si ≤ 0,25%, 0,31% ≤ Mn ≤0,6%, Cu ≤0,04%, Ti ≤ 0,05%, Zn ≤ 0,05%, Cr ≤ 0,01%, остальное - Al и неизбежные примеси, каждая из которых присутствует в количестве не более 0,05%, а в целом они составляют максимум 0,15%. Техническим результатом изобретения является создание алюминиевого сплава и алюминиевой ленты, изготовленной из алюминиевого сплава, которая пригодна для производства подложек для печатных форм, обладающих более высоким сопротивлением усталости при изгибе поперек направления вращения и большей термической устойчивостью без снижения способности к зернению. 2 н. и 5 з.п. ф-лы, 4 табл., 2 ил.

Изобретение относится к области технологии производства прессованных полуфабрикатов из алюминиевого сплава системы Al-Mg-Si, с улучшенными эксплуатационными и технологическими свойствами в виде длинномерных, тонкостенных панелей и профилей, предназначенных для использования на железнодорожном транспорте, монорельсовом транспорте и в других транспортных системах. Способ включает литье слитка из алюминиевого сплава серии 6000, гомогенизацию, горячее прессование при скорости истечения 3,0-30,0 м/мин из подогреваемого контейнера, термическую обработку на твердый раствор путем закалки в воду, проведение после закалки правки растяжением и искусственное старение. Техническим результатом изобретения является создание технологии производства прессованных полуфабрикатов из высоколегированного алюминиевого сплава системы Al-Mg-Si, обладающего хорошими механическими, технологическими и коррозионными свойства. 5 табл., 3 ил.

Изобретение относится к листам из алюминиевых сплавов для высокотемпературной пайки, которые могут быть использованы для изготовления радиаторов. Лист состоит из сердцевины, выполненной из алюминиевого сплава, и материала плакировки, нанесенного на по меньшей мере одну сторону сердцевины и выполненного из алюминиевого сплава с более низким коррозионным потенциалом, чем у материала сердцевины, причем материал плакировки представляет собой самый внешний слой листа для высокотемпературной пайки и выполнен из алюминиевого сплава, содержащего, в мас.%: от 0,8 до 1,3 Mg, от 0,5 до 1,5 Si, от 1,0 до 2,0, предпочтительно 1,4-1,8 Mn, ≤0,7 Fe, ≤0,1 Cu, и ≤4 Zn, ≤0,3 каждого из Zr, Ti, Ni, Hf, V, Cr, In, Sn, и ≤0,5 суммы Zr, Ti, Ni, Hf, V, Cr, In, Sn, а остальное - Al и неизбежные примеси. Изобретение позволяет создавать тонкие листы из алюминиевых сплавов, имеющие высокую прочность, хорошую коррозионную стойкость и обрабатываемость давлением. 27 з.п. ф-лы, 3 ил., 7 табл., 2 пр.
Наверх