Оптическая система с температурной компенсацией фокусировки

Изобретение относится к оптическому приборостроению и может быть использовано в устройствах приема и фокусировки оптического излучения в условиях больших изменений температуры окружающей среды. Изобретение направлено на обеспечение температурной компенсации при сильной расфокусировке оптической системы, что обеспечивается за счет того, что в оптической системе, содержащей, по крайней мере одну линзу с оправой, установленную с возможностью перемещения вдоль оптической оси относительно корпуса, и упруго закрепленный между оправой и корпусом узел температурной компенсации, содержащий компенсационный элемент, изготовленный из материала с отличающимся от материала корпуса коэффициентом линейного расширения и установленный параллельно оптической оси, узел температурной компенсации выполнен в виде шарнирного механизма, содержащего коромысло, упругий элемент и прижим, при этом компенсационный элемент жестко соединен одним концом с корпусом, а другим концом шарнирно соединен с первым плечом коромысла, которое установлено с возможностью качения относительно первого кулачка, выполненного на корпусе, второе плечо коромысла состыковано с помощью прижима со вторым кулачком, выполненным на оправе, расположенным диаметрально противоположно первому, и соединено через упругий элемент с корпусом. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к оптическому приборостроению и может быть использовано в устройствах приема и фокусировки оптического излучения в условиях больших изменений температуры окружающей среды.

Известна оптическая система (патент Японии № 271957, М. кл. G02B 7/10, опубл. 25.09.1995 г.) с подвижными линзами, содержащая приводы для перемещения линз, детекторы для определения положения линз, память для хранения данных о положениях линз и систему управления, которая на основе результатов детектирования положения линз, данных памяти и результатов измерения температуры сохраняет наилучшую фокусировку системы.

Недостатком этого устройства является то, что точность отработки алгоритма системы управления, т.е. выставление положения линз, обеспечивающих наилучшую фокусировку оптической системы, зависит от точности измерений положения линз и температуры, а также заложенных в алгоритм температурных зависимостей свойств системы. Эта точность может оказаться недостаточной для прецизионных систем, работающих в широком диапазоне изменений температуры окружающей среды. К тому же устройство сложно в реализации.

Наиболее близкой к предлагаемому изобретению по технической сущности и достигаемому эффекту является оптическая система (патент США № 6631040, М. кл. G02В 7/02, опубл. 07.10.2003 г.), содержащая, по крайней мере одну линзу с оправой, установленную с возможностью перемещения вдоль оптической оси относительно корпуса оптической системы, и узел температурной компенсации, включающий компенсационный элемент, изготовленный из материала с существенно отличающимся от материала корпуса коэффициентом линейного расширения и установленный параллельно оптической оси, который одним концом жестко закреплен на оправе, а другим концом упруго сопряжен с корпусом.

Вследствие изменения температуры окружающей среды из-за разности величин линейного расширения материалов корпуса и компенсационного элемента происходит перемещение линзы с оправой относительно корпуса. Материал компенсационного элемента выбирается таким образом, чтобы величина перемещения линзы компенсировала влияние температуры окружающей среды на величину фокусного расстояния оптической системы. Этим достигается независимость качества фокусировки оптического излучения от температуры окружающей среды.

Однако указанное устройство имеет существенный недостаток. Оно применимо только для тех случаев, когда перемещение линзы с оправой, необходимое для компенсации изменения фокусного расстояния оптической системы вследствие линейного расширения материалов корпуса и других составляющих оптической системы, а также изменений радиусов кривизны и показателя преломления линзы в оправе при изменении температуры окружающей среды, имеет незначительные величины. В случаях более сильной расфокусировки оптической системы при изменении температуры, когда необходимы большие значения перемещения линзы с оправой для компенсации расфокусировки, не удается подобрать соответствующий материал для изготовления компенсационного элемента.

Задачей, на решение которой направлено предлагаемое изобретение, является увеличение значения возможного перемещения линзы с оправой с целью обеспечения температурной компенсации при более сильной расфокусировке оптической системы.

Поставленная задача решается тем, что в оптической системе с температурной компенсацией фокусировки, содержащей по крайней мере одну линзу с оправой, установленную с возможностью перемещения вдоль оптической оси относительно корпуса, и упруго закрепленный между оправой и корпусом узел температурной компенсации, содержащий компенсационный элемент, изготовленный из материала с отличающимся от материала корпуса коэффициентом линейного расширения и установленный параллельно оптической оси, узел температурной компенсации выполнен в виде шарнирного механизма, содержащего коромысло, упругий элемент и прижим, при этом компенсационный элемент жестко соединен одним концом с корпусом, а другим концом шарнирно соединен с первым плечом коромысла, которое установлено с возможностью качения относительно первого кулачка, выполненного на корпусе, второе плечо коромысла состыковано с помощью прижима со вторым кулачком, выполненным на оправе и расположенным диаметрально противоположно первому, и соединено через упругий элемент с корпусом.

А также тем, что положение кулачков определяется из соотношения

ΔX=(ΔL1-ΔL2)·у21,

где ΔХ - величина перемещения оправы относительно корпуса при изменении температуры;

ΔL1 и ΔL2 - соответственно величины изменения длины компенсационного элемента и части корпуса от точки крепления к нему компенсационного элемента до вершины первого кулачка при изменении температуры;

у1 и у2 - соответственно проекции минимальных отрезков, соединяющих ось шарнирного соединения с вершинами первого и второго кулачков на плоскость, ортогональную оптической оси.

А также тем, что компенсационный элемент изготовлен из материала с меньшим коэффициентом линейного расширения, чем у материала корпуса.

А также тем, что компенсационный элемент изготовлен из материала с большим коэффициентом линейного расширения, чем у материала корпуса.

На чертеже представлена оптическая система с температурной компенсацией фокусировки, где линза 1 в оправе 2 установлена с возможностью перемещения вдоль оптической оси 0-01 относительно корпуса 3. Параллельно оптической оси 0-01 вдоль корпуса 3 установлен компенсационный элемент 4, который одним концом жестко соединен с корпусом 3, а вторым концом шарнирно соединен с первым плечом коромысла 5, которое установлено с возможностью качения относительно кулачка 6, выполненного на корпусе 3. Второе плечо коромысла с помощью прижима 7 состыковано с кулачком 8, выполненным на оправе 2 и расположенным диаметрально противоположно кулачку 6. Упругий элемент 9 соединяет корпус 3 с вторым плечом коромысла 5. Положение кулачков 6 и 8 определяется из соотношения

ΔX=(ΔL1-ΔL2)·у21,

где ΔX - величина перемещения оправы 2 относительно корпуса 3 при изменении температуры;

ΔL1 и ΔL2 - соответственно величины изменения длины компенсационного элемента 4 и части корпуса 3 от точки крепления к нему компенсационного элемента 4 до вершины первого кулачка 6 при изменении температуры;

у1 и у2 - соответственно проекции минимальных отрезков, соединяющих ось шарнирного соединения с вершинами первого 6 и второго 8 кулачков на плоскость, ортогональную оптической оси.

Компенсационный элемент 4 может быть изготовлен из материала с меньшим коэффициентом линейного расширения, чем у материала корпуса 3, или из материала с большим коэффициентом линейного расширения, чем у материала корпуса 3.

Устройство работает следующим образом.

При изменении температуры окружающего воздуха изменяются линейные размеры, радиусы кривизны оптических поверхностей и показатель преломления материала линзы 1. При этом также происходит изменение длины корпуса 3 вдоль оптической оси 0-01. В связи с этим изменяется воздушный промежуток между линзой 1 и фокальной плоскостью F, на которую фокусируется оптическое излучение, а при наличии в оптической системе кроме линзы 1 еще нескольких линз (на чертеже не показаны), изменяются также воздушные промежутки между линзами. Вследствие перечисленных причин происходит расфокусировка системы.

При изменении температуры также изменяется длина компенсационного элемента 4 и под действием молекулярных сил, вследствие разности коэффициентов линейного расширения материалов корпуса 3 и компенсационного элемента 4 происходит изменение взаимного положения кулачка 6 и первого плеча коромысла 5 таким образом, что точка их соприкосновения перемещается параллельно оптической оси на расстояние

ΔX1=(ΔL1-ΔL2),

где ΔL1 и ΔL2 - соответственно величины изменения длины компенсационного элемента 4 и части корпуса 3 от точки крепления к нему компенсационного элемента 3 до вершины кулачка 6 при изменении температуры.

При увеличении температуры коромысло 5 поворачивается относительно оси шарнирного соединения или по часовой стрелке (если коэффициент линейного расширения материала компенсационного элемента 4 меньше аналогичного коэффициента материала корпуса 3), или против часовой стрелки (если коэффициент линейного расширения материала компенсационного элемента 4 больше аналогичного коэффициента материала корпуса 3). Угловое отклонение коромысла 5 тем больше, чем больше разница коэффициентов линейного расширения материалов корпуса 3 и компенсационного элемента 4.

При повороте коромысла 5 оно перемещает линзу 1 с оправой 2 вдоль оптической оси 0-01. Упругий прижим 7 и упругий элемент 9 (выполненный, например, в виде пружины) обеспечивают постоянный упругий контакт между кулачком 8 на оправе 2 и вторым плечом коромысла 5.

Таким образом значение перемещения ΔХ линзы 1 в оправе 2 относительно корпуса 3 так же, как в прототипе, зависит от разности изменения длин компенсационного элемента 4 и соответствующей части корпуса 3. Но в заявляемой оптической системе оно зависит и от того, насколько кулачок 8 по сравнению с кулачком 6 установлен дальше от оси шарнирного соединения.

Для варианта исполнения оптической системы, представленной на чертеже, в котором вершины кулачков 6 и 8 и ось шарнирного соединения находятся в одной ортогональной оптической оси плоскости, справедливо выражение

ΔX=(ΔL1-ΔL2)·у21=·ΔХ1·у21,

где у1 и у2 - соответственно проекции минимальных отрезков, соединяющих ось шарнирного соединения с вершинами кулачка 6 и кулачка 8 на плоскость, ортогональную оптической оси.

Выбирая положение кулачков 6 и 8, можно значительно расширить возможность перемещения линзы 1 в оправе 2 относительно корпуса 3. При этом увеличение диапазона перемещения линзы 1 равно отношению у21.

Например, для оптической системы, работающей в ИК-области спектра, при изменении температуры в диапазоне от Tmin=-50°С до Тmax=50°С необходима подвижка последней линзы с оправой на величину 1,69 мм (определяется расчетным путем в каждом конкретном случае). Допустим, что в оптической системе-прототипе и в заявляемой оптической системе корпус и компенсационный элемент соответственно выполнены из алюминиевого сплава Д16 и инвара с коэффициентами линейного расширения α1=22,3·10-6 и α2=0,9·10-6 (град-1), а длина компенсационного элемента 4 равна L=100 мм. В этом случае в оптической системе-прототипе при изменении температуры в указанных пределах значение перемещения линзы 1 в оправе 2 не превышает ΔX1=(α12)·(Тmax-Tmin)·L=(22,3·10-6-0,9·10-6)·100·100 мм=0,214 мм, что значительно меньше необходимого и не обеспечивает компенсацию температурной расфокусировки.

В заявляемой же оптической системе при расположении кулачка 6 на корпусе 3 и кулачка 8 на оправе 2 с соблюдением условия у21=1,69/0,214≅7,90 (например, у1=5,0 мм и у2=39,5 мм) достигается перемещение линзы 1 в оправе 2 параллельно оптической оси 0-01 относительно корпуса 3 до значения ΔХ=ΔХ1·у21=0,214·7,9=1,69 мм, что обеспечивает компенсацию расфокусировки оптической системы при изменении температуры в диапазоне от -50 до +50°С.

1. Оптическая система с температурной компенсацией фокусировки, содержащая по крайней мере одну линзу с оправой, установленную с возможностью перемещения вдоль оптической оси относительно корпуса, и упруго закрепленный между оправой и корпусом узел температурной компенсации, содержащий компенсационный элемент, изготовленный из материала с отличающимся от материала корпуса коэффициентом линейного расширения и установленный параллельно оптической оси, отличающаяся тем, что узел температурной компенсации выполнен в виде шарнирного механизма, содержащего коромысло, упругий элемент и прижим, при этом компенсационный элемент жестко соединен одним концом с корпусом, а другим концом шарнирно соединен с первым плечом коромысла, которое установлено с возможностью качения относительно первого кулачка, выполненного на корпусе, второе плечо коромысла состыковано с помощью прижима со вторым кулачком, выполненным на оправе и расположенным диаметрально противоположно первому, и соединено через упругий элемент с корпусом.

2. Оптическая система по п.1, отличающаяся тем, что положение кулачков определяется из соотношения

ΔX=(ΔL1-ΔL2)·у21,

где ΔХ - величина перемещения оправы относительно корпуса при изменении температуры;

ΔL1 и ΔL2 - соответственно величины изменения длины компенсационного элемента и части корпуса от точки крепления к нему компенсационного элемента до вершины первого кулачка при изменении температуры;

у1 и у2 - соответственно проекции минимальных отрезков, соединяющих ось шарнирного соединения с вершинами первого и второго кулачков на плоскость, ортогональную оптической оси.

3. Оптическая система по п.1, отличающаяся тем, что компенсационный элемент изготовлен из материала с меньшим коэффициентом линейного расширения, чем у материала корпуса.

4. Оптическая система по п.1, отличающаяся тем, что компенсационный элемент изготовлен из материала с большим коэффициентом линейного расширения, чем у материала корпуса.



 

Похожие патенты:

Изобретение относится к области техники портативных дисплеев и направлено на повышение удобства при их использовании. .

Изобретение относится к оптическому приборостроению, в частности к способам крепления оптических компонентов в оправах и конструкциям оправ. .

Объектив // 1770937

Объектив // 2406101

Изобретение относится к модулю камеры, встроенному в портативное электронное устройство. Устройство содержит блок затвора, установленный на передней поверхности передней оправы объектива. Блок затвора имеет лепесток затвора, который открывает и закрывает оптический путь системы съемки изображения с помощью привода лепестка затвора. В кожухе, в котором размещен лепесток затвора с приводом, выполнено отверстие для оптического пути. Блок затвора установлен на передней поверхности передней оправы объектива, путем зацепления друг с другом секции фиксации крышки и секции фиксации кожуха. Технический результат - уменьшение количества деталей и упрощение их формы. 6 з.п. ф-лы, 50 ил.

Способ включает предварительное измерение технологические погрешностей линзовых узлов и расчет по ним величины изменения одного из воздушных промежутков и углы поворота каждого линзового узла вокруг оси наружного цилиндра линзового узла. Осуществляют осевой сдвиг и поворот всех линзовых узлов. Совмещают оптическую и механическую оси объектива путем радиального сдвига всех линзовых узлов. Объектив содержит размещенные в цилиндрическом отверстии корпуса с опорной торцевой плоскостью и наружным базовым резьбовым цилиндром линзовые узлы в общей цилиндрической оправе, установленной с возможностью осевого перемещения относительно опорной торцевой плоскости, и прокладное коррекционное кольцо и пружину для упругого осевого замыкания общей цилиндрической оправы. Объектив снабжен цилиндрической втулкой с прорезью, направленной вдоль оси цилиндрического отверстия корпуса, втулка жестко соединена с общей цилиндрической оправой линзовых узлов в радиальном направлении и упругим замыканием в осевом направлении пружиной. Втулка может перемещаться вдоль оси цилиндрического отверстия корпуса и разворачиваться вокруг этой оси. Цилиндрическое отверстие корпуса выполнено с эксцентриситетом Δк относительно наружного базового резьбового цилиндра объектива, а внутреннее отверстие общей цилиндрической оправы линзовых узлов выполнено с эксцентриситетом Δo относительно внешнего цилиндра общей цилиндрической оправы. Технический результат - повышение качества юстировки с одновременным обеспечением ее автоматизации. 2 н.п. ф-лы, 1 ил.

Изобретение относится к оптическому приборостроению и может быть использовано для ведения стрельбы из стрелкового оружия. Оптический прицел переменного увеличения содержит установленные в корпусе объектив, окуляр, систему смены увеличения, помещенную в подвижную оправу и кинематически связанную с механизмом смены увеличения, органы управления. Дополнительно введены: оборачивающая система, тубус с продольным пазом, в котором размещены оборачивающая система и система смены увеличения в оправе, механизм смены увеличения выполнен из толкателя, рычага и рукоятки. Технический результат - упрощение конструкции механизма смены увеличения, обеспечение управления механизмом смены увеличения одним органом, повышение эксплуатационных свойств прицела. 2 з.п. ф-лы, 2 ил.

Способ включает установку линзы на плоский буртик промежуточной части оправы, размещаемой на буртике цилиндрического отверстия основной оправы с возможностью наклона. Вращают основную оправу вокруг ее базовой оси, измеряют биение центра кривизны первой рабочей поверхности линзы относительно оси вращения, наклоняют промежуточную часть для совмещения центра кривизны первой рабочей поверхности линзы с осью вращения и фиксируют положение промежуточной части. Измеряют биение центра кривизны второй рабочей поверхности линзы относительно оси вращения, сдвигают линзу по плоской поверхности опорного буртика для совмещения центра кривизны второй рабочей поверхности линзы с осью вращения и фиксируют положение линзы в промежуточной части оправы. Оправа имеет наружную базовую цилиндрическую поверхность и плоский наружный базовый фланец, образующие базовую ось оправы, внутреннее цилиндрическое отверстие с опорным буртиком, в которое вставлена с увеличенным зазором посадки промежуточная цилиндрическая часть с плоским опорным буртиком для установки линзы. Промежуточная цилиндрическая часть сопряжена с опорным буртиком внутреннего цилиндрического отверстия по сферической поверхности. Технический результат - повышение точности центрировки за счет центрировки по обеим поверхностям линзы. 2 н. и 1 з.п. ф-лы, 2 ил.

Способ включает установку линзы сферической рабочей поверхностью на опорный буртик цилиндрического отверстия промежуточной цилиндрической части, размещаемой на опорном буртике цилиндрического отверстия основной оправы. Измеряют биение центра кривизны первой рабочей поверхности относительно оси вращения. Разворачивают промежуточную часть оправы для совмещения центра кривизны первой рабочей поверхности с осью вращения и фиксируют ее положение. Наклоняют линзу для совмещения центра кривизны второй рабочей поверхности с осью вращения или установки её перпендикулярно к оси вращения и фиксируют положение линзы в промежуточной части оправы. Оправа имеет наружную базовую цилиндрическую поверхность и плоский наружный базовый фланец, образующие базовую ось оправы, внутреннее цилиндрическое отверстие с опорным буртиком, в которое вставлена промежуточная цилиндрическая часть с опорным буртиком для установки линзы. Внутреннее цилиндрическое отверстие промежуточной цилиндрической части выполнено с эксцентриситетом относительно своего наружного цилиндра, а внутреннее цилиндрическое отверстие основной оправы выполнено с таким же эксцентриситетом относительно базовой оси основной оправы. Технический результат - повышение точности центрировки линзы в оправе за счет центрировки по обеим поверхностям линзы. 2 н.п. ф-лы, 1 ил.

Изобретение относится к осветительной системе, содержащей: плату СИД, несущую СИДы; и оптическую плату на плате СИД; причем оптическая плата выполнена из оптических модулей, расположенных рядом друг с другом согласно заранее определенным ориентациям по отношению друг к другу, причем каждый оптический модуль содержит, по меньшей мере, один оптический элемент, выполненный с возможностью быть обращенным к, по меньшей мере, одному из упомянутых СИДов и изменять параметр света, излучаемого этим, по меньшей мере, одним СИД, причем осветительная система снабжена механическими элементами защиты от неправильного обращения, выполненными с возможностью препятствовать размещению оптических модулей согласно ориентациям по отношению друг к другу, отличным от упомянутых заранее определенных ориентаций. 2 н. и 12 з.п. ф-лы, 20 ил.

Изобретение относится к области оптического приборостроения и может быть использовано для центрировки линз в оправах при их сборке для случаев, когда линзы базируются в оправах по плоским фаскам. Способ позволяет осуществлять центрировку линзы относительно базовой оси оправы при ее вращении по обеим рабочим поверхностям линзы, повышая при этом точность центрировки. Для этого оправа снабжается промежуточной частью, в которую линза устанавливается с радиальным зазором своей плоской фаской на плоский опорный фланец промежуточной части, который может наклоняться относительно основной оправы вокруг центра кривизны сферической поверхности, расположенный в одной плоскости с центром кривизны первой рабочей поверхности линзы. Для совмещения с базовой осью оправы первого центра кривизны рабочей поверхности линзу сдвигают в радиальном направлении в промежуточной оправе, после чего линзу фиксируют в промежуточной оправе. Второй центр кривизны линзы совмещается с базовой осью оправы наклоном промежуточной части оправы вокруг центра кривизны сферической поверхности, после чего промежуточная часть фиксируется в основной оправе. Сопряжение наружного опорного фланца промежуточной части оправы с опорным фланцем основной оправы осуществляется по контакту сферической и плоской поверхностей. Технический результат - осуществление центрировки линзы относительно базовой оси оправы при ее вращении по обеим рабочим поверхностям линзы, повышая при этом точность центрировки. 2 н. и 1 з.п. ф-лы, 1 ил.
Наверх