Способ получения 2-фенил-1,2,3-триазола

Описывается новый способ получения 2-фенил-1,2,3-триазола циклизацией фенилозазона глиоксаля в присутствии нового катализатора трифлата меди Cu(OSO2CF3)2 как без растворителя в расплаве при 130°С, так и в среде высококипящих растворителей (толуола, о-ксилола, бутанола) при температуре их кипения. Целевой продукт выделяют методом колоночной хроматографии с высоким выходом. 2 з.п. ф-лы.

 

Изобретение относится к области высокоэнергетических соединений, в частности к способу получения 2-фенил-1,2,3-триазола, который является перспективным прекурсором для синтеза энергетически активных материалов, а именно, 4-нитро-1,2,3-триазола.

Известны способы получения 2-фенил-1,2,3-триазола путем сухой перегонки фенилозазона глиоксаля [H.V.Pechmann. Annalen der Chemie. 1891. В.262. S.265-277] (выход 20%); при нагревании до 75-100°С фенилозазона глиоксаля с водным раствором медного купороса (CuSO4) в течение 6.5 ч, с последующим выделением продукта путем перегонки с водяным паром и соответствующей обработкой [J.L.Riebsomer. J. Org. Chem. 1948. V.13. №6. P.815-821; El-Khadem H., El-Shafei Z.M. J. Chem. Soc. 1958. №9. P.3117-3119] (выход 59, 50%, соответственно); при нагревании до 180-210°С фенилозазона глиоксаля с каталитическим количеством однохлористой меди (CuCl) [Ю.А.Наумов. В кн. Методы получения химических реактивов и препаратов. M.: Химия. 1969. Вып.18. С.196-198] (выход 66.6%). Недостатками упомянутых выше способов получения 2-фенил-1,2,3-триазола являются низкий выход, высокие температуры реакции, и использование водяного пара (в случае низких температур реакции).

Наиболее близким к заявляемому изобретению (прототип) является способ синтеза 2-фенил-1,2,3-триазола путем циклизации фенилозазона глиоксаля под действием катализатора CuCl в присутствии безводного CaCl2 в расплаве при 170-190°С, весь процесс включает 9 стадий: 1) - синтез, т.е. циклизация фенилозазона глиоксаля с последующей отгонкой продукта из реакционной смеси, при этом 2-фенил-1,2,3-триазол отгоняется вместе с анилином в интервале: 170°С/45-50 мм рт.ст. - 190°С/10 мм рт. ст.; 2) - обработка отогнанной смеси водой, перемешивание и подкисление 20% серной кислотой; 3) - отделение органического слоя (первая фракция 2-фенил-1,2,3-триазола) на делительной воронке; 4) - насыщение полученного водного раствора хлористым натрием; 5) - экстрагирование 2-фенил-1,2,3-триазола эфиром (2 раза) и объединение его с первой фракцией; 6) - сушка объединенного экстракта безводным сульфатом натрия; 7) - отделение раствора 2-фенил-1,2,3-триазола от осушителя (фильтрация); 8) - удаление растворителя (эфира); 9) - выделение целевого продукта (2-фенил-1,2,3-триазола) перегонкой в вакууме [Л.И.Верещагин, В.М.Никитин, В.И.Мещеряков, Г.А.Гареев, Л.П.Кириллова, В.М.Шульгина. ЖОрХ. 1989. Т.25. Вып.8. С.1744-1747] (выход 75%).

Недостатком вышеуказанного прототипа являются: сложность (многостадийность) процесса выделения целевого продукта, а также высокие температуры получения.

Цель предлагаемого нами изобретения заключается в упрощении способа получения 2-фенил-1,2,3-триазола.

Поставленная цель достигается:

1) использованием принципиально нового катализатора - трифлата меди Cu(OSO2СР3)2 для циклизации фенилозазона глиоксаля, который, как и в прототипе, является исходным реагентом для данного синтеза; применение нового катализатора позволяет снизить температуру процесса до 130°С, если процесс ведут без растворителя;

2) использованием высококипящих растворителей (толуола, о-ксилола, бутанола) при температурах их кипения (110-145°С), что также позволяет снизить температуру процесса, причем следует отметить, что до этого ни в одном из известных способов растворители не применялись;

3) использованием метода колоночной хроматографии для выделения 2-фенил-1,2,3-триазола (силикагель марки ЛСЛ254 5/40 μ, элюент: смесь гексан: серный эфир в соотношении 1:2), что значительно упрощает процесс выделения, позволяя снизить общее количество стадий процесса до трех в случае сплавления без растворителей и до четырех, когда процесс ведут в среде растворителей (см. примеры).

Следует отметить, что полученный по предлагаемому методу 2-фенил-1,2,3-триазол, характеризуется высокой степенью чистоты: 99.96-100%, согласно данным хромато-масс-спектрометрии. Схема процесса синтеза 2-фенил-1,2,3-триазола может быть представлена следующим образом:

Следующие неограничивающиеся примеры иллюстрируют изобретение.

Циклизация фенилозазона глиоксаля в расплаве

Пример 1. Выделение 2-фенил-1,2,3-триазола без колоночной хроматографии. В колбу Вюрца помещали хорошо перемешанную смесь фенилозазона глиоксаля 1 г (4.2 ммоль) и трифлата меди Cu(OSO2СР3)2 0.05 г (0.14 ммоль). Реакционную смесь нагревали в токе аргона до 130°С (до полного расплавления озазона глиоксаля) с последующей отгонкой дистиллята (2-фенил-1,2,3-триазол-анилин) при 130°С/90 мм рт.ст. - 105°С/17 мм рт.ст. Общее время процесса 50 мин, что включает время расплавления исходного фенилозазона глиоксаля, сам процесс его циклизации и отгонка дистиллята. Далее проводили процесс выделения целевого продукта: в полученный дистиллят добавляли серный эфир; эфирный раствор обрабатывали 10% соляной кислотой в делительной воронке для удаления анилина, промывали дистиллированной водой до отрицательной реакции на ион хлора, сушили над прокаленным углекислым калием. После отгонки эфира вещество перегоняли в вакууме. Получили 0.5 г (82.0%, выход выше, чем у прототипа) 2-фенил-1,2,3-триазола, бесцветную жидкость, т. кип. 96°С/10 мм рт.ст., n d20=1.5880. Rf=0.84. Контроль за ходом реакции осуществляли методами тонкослойной хроматографии, используя пластинки с закрепленным слоем «Silufol», элюент: гексан-серный эфир (1:2), а также хромато-масс-спектрометрии. (Масс-спектры получали на хромато-масс-спектрометре GCMS-QP5050A, фирмы Shimadzu). Найдено, %: С 66.23, Н 5.09, N 28.55. Вычислено для C8H7N3, %: С 66.21, Н 4.82, N 28.97. Чистота продукта 99.96% (по данным хромато-масс-спектрометрии). В ИК-спектре (ν, см-1) 2-фенил-1,2,3-триазола присутствуют все характерные полосы: валентных колебаний связей С-Н триазольного цикла при 3139 ел. и 3124 сл., бензольного кольца при 3080 сл., 3059 сл., 3036 сл., С=С ароматического кольца при 1599 с., 1502 о.с., 1476 сл., неплоских деформационных колебаний СН монозамещенного бензольного кольца при 755 и 694, валентных колебаний триазольного цикла при 1410 с., 1376 с., деформационных колебаний С-С и С-Н связей триазольного цикла при 1260 с., 1103 сл., 1086 ср., 1022 ср., 961 с., 951 с., 912 ср., 822 с., 669 с. (ИК-спектры записывали на спектрометре Bruker IFS-25 в микрослое). ЯМР 1H (δ, м.д.): 8.03, 7.55, 7.41 (резонансные сигналы протонов фенильного фрагмента), 8.11 (резонансный сигнал протонов триазольного фрагмента в положении 4,5 2-фенил-1,2,3-триазола проявляется). ЯМР 13С (δ, м.д.): 139.31 (ipso), 129.73 (мета), 127.75 (пара) и 118.50 (орто) (резонансные сигналы атомов углерода фенильного кольца); 136.47 (резонансный сигнал С-4,5 триазольного фрагмента). (Спектры ЯМР 1H и 13С снимали на приборе «Bruker», модель DPX 400 (400 МГц) в ДМСО-d6).

Пример 2. Выделение 2-фенил-1,2,3-триазола с применением колоночной хроматографии.

В колбу Вюрца помещали растертую и хорошо перемешанную смесь 2 г (8.4 ммоль) фенилозазона глиоксаля и трифлата меди Cu(OSO2СР3)2 0.1 г (0.28 ммоль). Синтез 2-фенил-1,2,3-триазола проводили аналогично примеру 1 до выделения дистиллята. А дальше отделение 2-фенил-1,2,3-триазола от анилина проводили на колонке высотой 46 см, диаметром 2 см, наполненной силикагелем (марка ЛСЛ254 5/40 μ) - соотношение очищаемой смеси веществ к сорбенту равно 1:50. Элюент: гексан-серный эфир (1:2). При этом способе выделения количество стадий процесса уменьшается до трех по сравнению с прототипом: 1) - синтез: циклизация фенилозазона глиоксаля; 2) - фильтрование от твердых частиц катализатора; 3) - выделение 2-фенил-1,2,3-триазола методом колоночной хроматографии. Получили 0.98 г (80.7%, выход выше, чем в прототипе) 2-фенил-1,2,3-триазола, т. кип. 96°С/10 мм рт.ст., n d20=1.5880. Чистота продукта 100%.

Циклизация фенилозазона глиоксаля в растворителях

Пример 3. В трехгорлую колбу, снабженную мешалкой, холодильником, трубкой для ввода аргона помещали хорошо перемешанную смесь фенилозазон глиоксаля 1 г (4.2 ммоль) и трифлата меди Cu(OSO2CF3)2 0.05 г (0.14 ммоль) и 10 мл толуола. Реакционную смесь кипятили при 110°С. Время реакции 7 ч. Контроль за ходом реакции осуществляли методами тонкослойной хроматографии, используя пластинки с закрепленным слоем «Silufol», элюент: гексан-серный эфир (1:2), а также хромато-масс-спектрометрии. После окончания циклизации толуол отогнали на водоструйном насосе. Выделение 2-фенил-1,2,3-триазола проводили на колонке, наполненной силикагелем (марка ЛСЛ254 5/40 μ), элюент: серный эфир-гексан (2:1). Процесс протекает в четыре стадии: 1) - синтез: циклизация фенилозазона глиоксаля; 2) - фильтрование от твердых частиц катализатора; 3) - отгонка растворителя; 4) - выделение 2-фенил-1,2,3-триазола методом колоночной хроматографии. Получили 0.55 г (90.2%) 2-фенил-1,2,3-триазола, т. кип. 94°С/8 мм рт.ст., nd20=1.5880. Чистота продукта 100% по данным хромато-масс-спектрометрии.

Пример 4. В условиях, аналогичных указанным в примере 3, помещали хорошо перемешанную смесь фенилозазон глиоксаля 2 г (8,4 ммоль) и трифлата меди Cu(OSO2CF3)2 0.1 г (0.28 ммоль) и 20 мл о-ксилола. Реакционную смесь кипятили при 145°С. Время реакции 6.5 ч. Контроль за ходом реакции осуществляли методами тонкослойной хроматографии, используя пластинки с закрепленным слоем «Silufol», элюент: гексан-серный эфир (1:2), а также хромато-масс-спектрометрии. После окончания циклизации из реакционной смеси отфильтровывали катализатор, о-ксилол отогнали на ротадесте. Выделение 2-фенил-1,2,3-триазола проводили аналогично примеру 3. Получили 0,98 г (74.0%) 2-фенил-1,2,3-триазола, т.кип. 96°С/10 мм рт.ст., n d20=1.5880. Чистота продукта 99.98% по данным хромато-масс-спектрометрии.

Пример 5. В условиях, аналогичных указанным в примере 3, помещали хорошо перемешанную смесь фенилозазона глиоксаля 1 г (4.2 ммоль) и трифлата меди Cu(OSO2CF3)2 0.05 г (0.14 ммоль) и 10 мл н-бутанола. Реакционную смесь кипятили при 117°С. Время реакции 7.5 ч. После окончания циклизации из реакционной массы отфильтровывали катализатор, бутанол отогнали на ротадесте. Выделение 2-фенил-1,2,3-триазола проводили аналогично примеру 3. Выход 0.47 г (68.0%) 2-фенил-1,2,3-триазола, т.кип. 94°С/8 мм рт.ст., n d20=1.5880. Чистота продукта 99.98% по данным хромато-масс-спектрометрии.

1. Способ получения 2-фенил-1,2,3-триазола путем циклизации фенилозазона глиоксаля при нагревании в присутствии соли меди в качестве катализатора, с последующим выделением целевого продукта, отличающийся тем, что в качестве соли меди используют трифлат меди и процесс проводят как без растворителя при 130°С в течение 50 мин, так и в среде высококипящих растворителей при температурах их кипения в течение 6,5-7,5 ч, а для выделения 2-фенил-1,2,3-триазола используют метод колоночной хроматографии.

2. Способ по п.1, отличающийся тем, что в качестве высококипящих растворителей используют толуол, о-ксилол, бутанол.

3. Способ по п.1, отличающийся тем, что для колоночной хроматографии в качестве неподвижной фазы используют силикагель марки ЛСЛ254 5/40 μ, а в качестве элюента - смесь гексан:серный эфир в соотношении 1:2.



 

Похожие патенты:

Изобретение относится к новым замещенным гетероциклическим производным, которые могут найти применение для лечения диабета и снижения холестерина. .

Изобретение относится к соединению, применимому для профилактики и лечения вирусных инфекционных заболеваний, особенно заболеваний печени, вызванных инфекцией вирусом гепатита С (HCV), вследствие его ингибирующей активности против HCV, имеющего высокую степень репликации, способу его получения, промежуточному соединению, применимому для его получения, и фармацевтической композиции, содержащей эти соединения

Изобретение относится к использованию производных 1,2,4-триазола формулы I, где R1, R2 и R3 - независимо водород или галоген; R4 - C1-С6 алкил; R5 и R6 - независимо C1-С6 алкил или образуют вмест с атомом азота, к которому они присоединены, 5-7-членную гетероциклильную группу, в которой 6-членный гетероциклил может дополнительно содержать один атом кислорода или азота и может быть замещен ацетилом, C1-С6 алкилом или фенилом; X--S-, -SO-, -SO2- или О; и n - целое число, выбранное из 1-8; или их фармацевтически приемлемых солей, стереоизомеров или сольватов, при получении лекарственного средства для лечения или профилактики заболевания или состояния, опосредованного сигма-1 рецептором, к способам получения данных соединений, к промежуточным соединениям и к фармацевтическим композициям, которые включают соединения формулы I

Изобретение относится к N-[2,4-диоксо-6-(тетрагидрофуран-2-ил)-7-трифторметил-1,4-дигидро-2H-хиназолин-3-ил]метансульфонамиду и N-[6-(1-изопропоксиэтил)-2,4-диоксо-7-трифторметил-1,4-дигидро-2H-хиназолин-3-ил]метансульфонамиду, которые обладают антагонистической активностью в отношении рецептора АМРА. Изобретение также относится к фармацевтической композиции и к применениям указанных соединений для получения лекарственных средств, предназначенных для лечения состояния, опосредованного АМРА, и, прежде всего, для лечения эпилепсии или шизофрении. 5 н. и 1 з.п. ф-лы, 81 пр.

Настоящее изобретение относится к соединениям формулы (I), где А1 и R1, R2, R3, R4 и R5 определены в формуле изобретения, которые являются предпочтительными ингибиторами цистеинпротеазы катепсина, в частности цистеинпротеазы катепсина S или L, что делает их полезными в качестве лекарственных средств, особенно для лечения диабета, атеросклероза, аневризмы брюшной аорты, периферического артериального заболевания или диабетической нефропатии. Изобретение также относится к способам получения этих соединений, фармацевтической композиции их содержащей и их применению. 7 н. и 17 з.п. ф-лы, 1 табл., 255 пр.

Изобретение относится к соединению формулы I или его фармацевтически приемлемым солям, где группировка Het представляет собой пиридинил или тиазолил; каждый из R1 и R2 представляет собой Н; каждый из R3 и R4 независимо представляет собой Н, -С1-8алкил или R3 и R4, взятые вместе, образуют С3-6циклоакил; W представляет собой -Н, -РО(ОН)2 или -СН2ОРО(ОН)2; каждый из X и Y представляет собой хлор или каждый из X и Y представляет собой фтор, и Z представляет собой Н. Соединения формулы I используют в способе контролирования или лечения инфекций у домашнего скота, включающем введение нуждающемуся в этом животному терапевтически эффективного количества соединения формулы I или его фармацевтически приемлемой соли. 2 н. и 6 з.п. ф-лы, 3 табл., 161 пр.
Наверх