Маятниковый датчик уровня

Изобретение относится к устройствам для измерения отклонения объекта в вертикальной плоскости и может быть использовано для контроля и выправки положения железнодорожного полотна. Сущность: маятниковый датчик уровня содержит массивный маятник, ванну с демпфирующей жидкостью, ось подвеса, две шарикоподшипниковые опоры, датчик угла. В эту схему введены два акселерометра и вычислитель. При этом акселерометры расположены на маятнике так, что ось чувствительности одного направлена горизонтально и перпендикулярно оси подвеса маятника, а ось чувствительности другого акселерометра направлена вертикально, выходы первого и второго акселерометра соединены с первым и вторым входами вычислителя соответственно, выход датчика угла соединен с третьим входом вычислителя. Акселерометры, установленные на маятнике, измеряют вертикальную и горизонтальную составляющие ускорения вибрации. По этим составляющим в вычислителе определяется результирующий вектор вибрационного перемещения точки подвеса маятника и угол, который он составляет с линией горизонта. По этим параметрам вычисляется значение угла отклонения маятника от горизонта под действием косой вибрации, которое вычитается из показаний датчика угла. Технический результат: расширение функциональных возможностей применения датчика уровня при больших значениях линейной вибрации за счет компенсации вибрационного сдвига нуля маятника в показаниях прибора. 2 ил.

 

Изобретение относится к устройствам для измерения отклонения объекта в вертикальной плоскости и может быть использовано для контроля и выправки положения железнодорожного полотна.

Известен индикатор положения маятниковый (ИПМ-1) производства завода «Сибтензоприбор» г.Топки [Инструкция по эксплуатации и техническое описание с паспортом А288.02.00.000 ПС]. Он состоит из линейного акселерометра с горизонтально расположенной осью чувствительности, выход которого соединен с фильтром нижних частот, предназначенным для подавления вибрационной составляющей сигнала, так как в большинстве случаев работа датчика уровня осуществляется одновременно с вибрационным уплотнением балласта рабочими органами путевой машины.

Основными параметрами фильтров нижних частот являются ширина полосы пропускания, степень подавления сигнала в полосе задерживания и реакция фильтра на единичное импульсное воздействие.

Недостатком прибора является то, что значения параметров и структура фильтра нижних частот определяются такими характеристиками путевых машин, как скорость движения в рабочем режиме, а также частота и амплитуда основной гармоники вибрации подбивочного блока, и должны выбираться для конкретного типа машины.

Прототипом является маятниковый датчик уровня ELT-133.00 фирмы «Plasser & Thuerer» (Австрия) [Распопов В.Я., Иванов Ю.В., Зотов С.А. Датчики уровня систем управления выправочных железнодорожных машин // Датчики и системы - 1999. - №4. - С.40-43.]. Он содержит массивный маятник, корпус, в нижней части которого имеется ванна, профиль которой повторяет профиль нижней части маятника по его радиусу. В ванне находится демпфирующая жидкость. Подвес маятника в корпусе выполнен с помощью оси, жестко связанной с маятником и двух шарикоподшипниковых опор. С осью подвеса маятника связана ось вращения потенциометрического датчика угла.

Работа маятникового датчика осуществляется одновременно с вибрационным уплотнением балласта рабочими органами путевой машины. Виброблоки путевой машины создают линейную вибрацию, имеющую как вертикальную, так и горизонтальную составляющие. Совместное воздействие горизонтальной и вертикальной вибраций («косая вибрация») приводит к смещению положения равновесия маятника, которое получило название «вибрационный сдвиг нуля».

Таким образом, к недостаткам прибора можно отнести наличие у него значительной погрешности, обусловленной вибрационным сдвигом нуля маятника, которая ограничивает возможности его применения.

Задачей предлагаемого устройства является расширение возможностей применения измерителя угла при больших значениях линейной вибрации за счет компенсации вибрационного сдвига нуля маятника в показаниях прибора.

Предлагаемый маятниковый датчик уровня содержит массивный маятник, ванну с демпфирующей жидкостью, ось подвеса, две шарикоподшипниковые опоры, датчик угла, два акселерометра, вычислитель, причем акселерометры расположены на маятнике так, что ось чувствительности одного направлена горизонтально и перпендикулярно оси подвеса маятника, а ось чувствительности другого акселерометра направлена вертикально, выходы первого и второго акселерометра соединены с первым и вторым входами вычислителя соответственно, выход датчика угла соединен с третьим входом вычислителя.

Сущность предлагаемого изобретения заключается в том, что акселерометры, установленные на маятнике, измеряют вертикальную и горизонтальную составляющие ускорения вибрации. По этим составляющим в вычислителе определяется результирующий вектор вибрационного перемещения точки подвеса маятника и угол, который он составляет с линией горизонта. По этим параметрам вычисляется значение угла отклонения маятника от горизонта под действием косой вибрации, которое вычитается из показаний датчика угла.

На фиг.1 показана структурная схема маятникового датчика уровня с компенсацией вибрационного сдвига нуля.

Маятниковый датчик уровня содержит массивный маятник 1, ванну с демпфирующей жидкостью 2, ось подвеса 3, две шарикоподшипниковые опоры 4, датчик угла 5, два акселерометра 6, 7, вычислитель 8, причем акселерометры 6 и 7 расположены на маятнике так, что ось чувствительности акселерометра 6 направлена горизонтально и перпендикулярно оси подвеса маятника, а ось чувствительности акселерометра 7 направлена вертикально, выходы акселерометров 6 и 7 соединены с первым и вторым входами вычислителя 8 соответственно, а выход датчика угла 5 соединен с третьим входом вычислителя 8.

Работа устройства происходит следующим образом.

При наличии «косой вибрации» результирующий вектор вибрационного перемещения А точки подвеса маятника составляет некоторый угол ε с линией горизонта, как показано на фиг.2. Совместное воздействие горизонтальной и вертикальной вибраций приводит к смещению положения равновесия маятника. Угол смещения физического маятника от положения равновесия, обусловленный «вибрационным сдвигом нуля», можно рассчитать по формуле [Лунц Я.Л. Ошибки гироскопических приборов. - Л.: Судостроение, 1968. - 232 с.].

где А - амплитуда вибрационного перемещения точки подвеса маятника;

f - круговая частота вибрации;

m - масса маятника;

d - расстояние от центра тяжести маятника до оси подвеса;

ω0 - круговая частота собственных недемпфированных колебаний маятника;

J - момент инерции маятника относительно оси подвеса.

Учитывая, что вибрационное перемещение точки подвеса маятника изменяется по синусоидальной зависимости, амплитуду вибрационного перемещения можно выразить через амплитуду виброускорения по формуле

Частота вибрации f зависит от конструктивных особенностей путевых машин и для каждого конкретного типа машины известна.

Тогда с учетом выражения (2) формула (1) имеет вид

Виброускорение точки подвеса маятника определяется по сигналам акселерометров 6 и 7 в вычислителе 8 по формуле

где - вертикальная составляющая виброускорения точки подвеса маятника;

- горизонтальная составляющая виброускорения точки подвеса маятника.

Угол ε также определяется в вычислителе 8 по формуле

Остальные коэффициенты в выражении (2) являются конструктивными параметрами маятника и поэтому известны. Таким образом, по формуле (2) в вычислителе 8 может быть определено значение угла «вибрационного сдвига нуля» маятника. Вычитая полученное значение угла отклонения маятника, обусловленного «вибрационным сдвигом нуля» из значения угла, измеренного прибором, которое поступает в вычислитель 8 с выхода датчика угла 5, можно получить истинное значение превышения одного рельса над другим (в угловой или линейной мере).

Согласно формуле (1) для маятникового датчика уровня ELT-133.00, имеющего параметры m=10,216 кг, d=0,22 м, ω0=6,674 рад/с, J=0,49 кг·м2, при воздействии на него «косой» вибрации с амплитудой А=3·10-3 м, круговой частотой вибрации f=207,24 рад/с (33 Гц), углом наклона результирующего вектора вибрации к горизонту ε=45° вибрационный сдвиг нуля ϕ составляет 2,8 град. Вибрационный сдвиг нуля маятника представляет собой погрешность прибора, которая для данного примера в пересчете на превышение одного рельса над другим на базе 1520 мм составляет 73 мм (допустимая погрешность измерения составляет ±1 мм).

Таким образом, совокупность признаков предлагаемого устройства, реализация которых может быть выполнена в соответствии с фиг.1, позволяет расширить функциональные возможности измерителя угла при больших значениях линейной вибрации за счет компенсации вибрационного сдвига нуля маятника в показаниях прибора.

Маятниковый датчик уровня, содержащий массивный маятник, ванну с демпфирующей жидкостью, ось подвеса, две шарикоподшипниковые опоры, датчик угла, отличающийся тем, что в него дополнительно введены два акселерометра и вычислитель, причем акселерометры расположены на маятнике так, что ось чувствительности одного направлена горизонтально и перпендикулярно оси подвеса маятника, а ось чувствительности другого акселерометра направлена вертикально, выходы первого и второго акселерометра соединены с первым и вторым входом вычислителя соответственно, выход датчика угла соединен с третьим входом вычислителя.



 

Похожие патенты:

Уровень // 2290607
Изобретение относится к геодезическому приборостроению и предназначено для выверки горизонтальности линий и плоскостей. .

Изобретение относится к области электродуговой сварки, а именно к маятниковым датчикам пространственного положения сварочной ванны. .

Изобретение относится к измерительным приборам, в частности к датчикам угла отклонения управляемого боеприпаса от горизонта при его выстреливании. .

Изобретение относится к области приборостроения, в частности к устройствам для контроля положения вертикали транспортного средства при его движении по пересеченной местности или на горных склонах.

Изобретение относится к устройствам для определения крена объекта. .

Изобретение относится к измерительной технике и может быть использовано для измерения углов наклона гидротехнических сооружений. .

Изобретение относится к области приборостроения и может быть использовано при определении отклонения объекта от вертикального положения. .

Изобретение относится к контрольно-измерительной технике, в частности к устройствам для определения угла наклона подвижных объектов. .

Изобретение относится к контрольно-измерительной технике /приборостроению/, а именно к устройствам для измерения угла наклона технических объектов по отношению к вертикали или любому заданному направлению.

Изобретение относится к приборостроению и может быть использовано для измерения углов наклона объектов в условиях действия вибраций и импульсных перегрузок, например ударного происхождения.

Изобретение относится к машиностроению, в частности к грузоподъемной технике, и может использоваться во фронтальных погрузчиках

Изобретение относится к устройствам для измерения отклонения объекта в вертикальной плоскости и может быть использовано для контроля и выправки положения железнодорожного полотна

Изобретение относится к измерительной технике и может быть использовано для определения углов наклона, в частности, подвижных объектов. Заявленный маятниковый датчик угла наклона содержит поперечный и боковые стержни, при этом вторые концы каждого из боковых стержней неподвижно соединены с роторами соответствующих вращающихся трансформаторов, находящихся на площадке, установленной подвижно на оси подвеса датчика наклона, вращающиеся трансформаторы установлены симметрично относительно оси датчика и на расстоянии друг от друга, обеспечивающем образование стержнями в точках их соединения параллелограмма, причем статор каждого вращающегося трансформатора скреплен соосно с шестерней и, как и его ротор, установлен с возможностью поворота относительно оси вращающегося трансформатора, на оси датчика наклона жестко установлена шестерня, входящая в зацепление с шестерней статора одного из вращающихся трансформаторов и через дополнительную шестерню с шестерней второго вращающегося трансформатора, а обмотки роторов вращающихся трансформаторов соединены последовательно и встречно. Технический результат, достигаемый от реализации заявленного изобретения, заключается в повышении точности измерения угла наклона объекта при его движении, посредством исключения влияния линейного ускорения при движении объекта на результаты измерения угла его наклона относительно местной вертикали, что повышает точность измерения угла наклона объекта при его движении. Указанная цель достигается тем, что дифференциальный сигнал с двух вращающихся трансформаторов определяется только поворотом объекта при его наклоне и не чувствителен к колебаниям маятника относительно оси его подвеса при движении объекта. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для определения углов наклона, в частности подвижных объектов. Техническим результатом изобретения является повышение точности измерения угла наклона объекта при его движении. Маятниковый датчик угла наклона содержит маятник и два датчика угла, состоящие из статора и ротора. Статоры датчиков углов соединены соосно с шестернями. Оба датчика угла установлены на одной оси подвеса и их роторы жестко закреплены на этой оси. Статор и шестерня одного датчика угла жестко соединены с маятником и установлены с возможностью их совместного поворота вокруг оси подвеса относительно ротора этого датчика угла. Статор и шестерня другого датчика угла установлены с возможностью их совместного поворота вокруг оси подвеса относительно ротора этого датчика угла. Шестерни, соединенные со статорами датчиков углов, находятся в зацеплении через четное количество промежуточных шестерен, выходные обмотки статоров датчиков углов соединены с возможностью суммирования их выходных сигналов. 1 ил.

Уровень // 2570799
Изобретение относится к инструментам контроля горизонтальности и вертикальности плоскостей и измерения малых углов отклонения от горизонтальности и вертикальности и может быть использовано в строительной отрасли и в бытовых условиях. Уровень, содержащий визуальный индикатор в виде стрелочного указателя, размещенного в защитной оправе и подвешенного радиально с возможностью свободного поворота на горизонтальной оси, защитная оправа с фронтальной стороны прозрачная, снабжена кольцевой контрольно-измерительной шкалой, по оси которой расположена горизонтальная ось стрелочного указателя, при этом защитная оправа закреплена в прямоугольном полом корпусе, имеющем две параллельно расположенные узкие рабочие грани, соединенные двумя параллельно расположенными широкими гранями, отличающийся тем, что защитная оправа выполнена в виде прямоугольной платы, закрепленной неподвижно в полости прямоугольного корпуса с плотной посадкой между узкими рабочими гранями, кольцевая контрольно-измерительная шкала и один конец горизонтальной оси закреплены на прямоугольной плате защитной оправы, второй конец горизонтальной оси закреплен на прозрачной крышке защитной оправы. Технический результат заключается в упрощении конструкции, технологии изготовления и повышении эксплуатационной надежности. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для определения углов поворота, в частности, подвижных элементов конструкций объектов. Технической задачей изобретения является увеличение диапазона измерений углов поворота датчика и повышение точности измерения углов поворота подвижных элементов конструкции объекта. Указанная цель достигается тем, что суммарный сигнал с двух датчиков углов определяется поворотом только одного подвижного элемента конструкции и не чувствителен к перемещениям второго подвижного элемента за счет того, что каждый из датчиков установлен на своей оси, жестко закрепленной на одном из подвижных элементов конструкции. Предлагаемое техническое решение позволяет получать сигнал, пропорциональный углу поворота одного из подвижных элементов конструкции относительно исходного положения датчика независимо от положения второго подвижного элемента конструкции. 1 ил.
Наверх