Синхронная реактивная машина



Синхронная реактивная машина
Синхронная реактивная машина
Синхронная реактивная машина
Синхронная реактивная машина
Синхронная реактивная машина

Владельцы патента RU 2346376:

Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (RU)

Изобретение относится к области электротехники и может быть использовано, например, в регулируемых электроприводах общепромышленных механизмов, а также в транспортных средствах, а именно в источниках питания бортовой сети автомобилей, тракторов, вездеходов и т.д. Сущность изобретения состоит в том, что синхронная реактивная двухполюсная машина содержит на статоре многофазную силовую обмотку, равномерно распределенную вдоль внутренней расточки статора и предназначенную для подключения к вентильному преобразователю, а также многофазную обмотку возбуждения с полным шагом, предназначенную для подключения к управляемым возбудителям. При этом согласно данному изобретению пакет сердечника статора выполняют в виде квадрата, при этом обмотка возбуждения размещена в дополнительных пазах, которые располагаются в углах пакета. Технический результат, достигаемый настоящим изобретением, заключается в повышении коэффициента использования электротехнической стали при изготовлении синхронной реактивной машины. 5 ил.

 

Изобретение относится к электротехнике и может быть использовано, например, в регулируемых электроприводах общепромышленных механизмов, а также в транспортных средствах, а именно в источниках питания бортовой сети автомобилей, тракторов, вездеходов и.т.д.

Известны синхронные реактивные машины, которые имеют бесконтактное исполнение (см. Кононенко, Е.В. Синхронные реактивные машины / Е.В.Кононенко. - М.: Энергия, 1970. - 208 с.). Однако эти электрические машины имеют неудовлетворительные массогабаритные показатели, а попытки их улучшения требуют значительного усложнения конструкции ротора.

Находят также применение бесконтактные синхронные генераторы с возбуждением и вращающимся выпрямителем, с многофазной обмоткой якоря (статора) и силовым многофазным выпрямителем на выходе генератора (патент 4121148 США, МКИ Н02К 19/34; Н02Р 9/14; [Бесконтактный синхронный генератор] Brushless synchronous generator system; Hubert Platzer, Dipl.-Ing. Hitzinger & Co., Linz, Austria - №790263; Заявл. 25.04.1977; Опубл. 17.10.1978.). Однако размещение на роторе вращающейся обмотки возбуждения и диодов выпрямителя снижает механическую надежность генератора и не позволяет получить высокие угловые скорости вращения ротора.

Наиболее близким изобретением к заявляемой машине является синхронная реактивная машина, содержащая многофазную силовую обмотку и многофазную обмотку возбуждения с полным шагом, подключаемую к управляемым возбудителям (патент РФ №2240640 МПК Н02G 1/02. Синхронный реактивный генератор автономной энергетической установки и способ управления им. / Ю.С.Усынин, С.М.Бутаков, М.А.Григорьев, К.М.Виноградов. Заявлено 20.06.03, №2003118611/09. Опубликовано 20.11.04. Бюл. №32).

Особенностью электрической машины, описанной в этом прототипе, является то, что возбуждение электрической машины, работающей в режиме генератора, создается по продольной оси этого генератора не обмоткой возбуждения, расположенной на роторе, как в обычных синхронных генераторах (и которая отсутствует в прототипе), а током той фазы из дополнительных обмоток возбуждения, размещенных на статоре, витки которой в рассматриваемый момент времени расположены напротив межполюсного промежутка ротора и магнитная ось которой направлена, следовательно, вдоль продольной оси машины. При вращении ротора синхронного генератора витки обмотки возбуждения предыдущей фазы оказываются расположенными не в межполюсном промежутке, а напротив полюса ротора, поэтому ток в этой фазе уменьшают до нуля. Вместе с тем межполюсный промежуток надвигается на витки следующей фазы обмотки возбуждения, ток в которой устанавливают равным току возбуждения генератора. Когда ротор генератора делает один полный оборот (электрический), токи во всех фазах обмотки возбуждения генератора поочередно устанавливают равными току возбуждения генератора, пока витки этих фаз располагаются напротив межполюсного промежутка ротора.

В основу предлагаемого изобретения положена техническая задача, заключающаяся в повышении коэффициента использования электротехнической стали при изготовлении синхронной реактивной машины.

Решение поставленной задачи достигается тем, что в синхронной реактивной машине (СРМ), содержащей на статоре многофазную силовую обмотку, равномерно распределенную вдоль внутренней расточки статора и предназначенную для подключения к вентильному преобразователю, а также многофазную обмотку возбуждения с полным шагом, подключенную к управляемым возбудителям, согласно изобретению пакет сердечника статора выполнен в виде квадрата, при этом обмотка возбуждения размещена в дополнительных пазах, которые выполнены в углах пакета.

Предлагаемое техническое решение сохраняет все основные технические преимущества, характерные для прототипа (простоту конструкции, высокую технологичность изготовления электрической машины; бесконтактное исполнение в сочетании с отсутствием обмотки на роторе повышает надежность работы подшипников и всей машины; возможность выполнить ротор массивным (т.е. полюса ротора и вал из одной цельной заготовки) существенно повышает его прочность и поперечную жесткость, что позволяет получать высокие угловые скорости и большие перегрузки по моменту). Предлагаемое решение позволяет повысить коэффициент использования электротехнической стали при изготовлении электрической машины, т.к. та часть электротехнической стали, которая находится в углах пакета и которая при традиционной конструкции электромашины шла бы в обрезь, теперь полезно используется в магнитопроводе.

Проведенное исследование патентной и научно-технической литературы аналогичных устройств не выявило, поэтому можно утверждать, что предлагаемое устройство характеризуется новизной.

Предлагаемое техническое решение удовлетворяет критерию "изобретательский уровень", так как оно характеризуется новой совокупностью признаков, не известных из уровня техники.

Сущность изобретения поясняется чертежами, где изображены

- на фиг.1 - схематичный поперечный разрез синхронной реактивной машины;

- на фиг.2 - пример функциональной схемы электрической генераторной установки;

- на фиг.3 - графики токов и напряжений в отдельных участках схемы этой электрической генераторной установки. Здесь обозначены сплошными жирными линиями ЕА, Ев, ЕC - ЭДС вращения генератора; Iх, Iy - токи в обмотках возбуждения;

- на фиг.4 - пример функциональной схемы электропривода с синхронной реактивной машиной;

- на фиг.5 - графики токов и напряжений в отдельных участках схемы этого электропривода. Здесь обозначены сплошными жирными линиями UA, UB, Uc - напряжения на выходах однофазных автономных инверторов, штриховыми линиями ЕА, Ев, ЕC - ЭДС вращения, наводимые в фазных силовых обмотках двигателя; Ix, IY - токи в обмотках возбуждения.

На фиг.1, где представлена в разрезе в качестве примера трехфазная синхронная реактивная машина, в пазах статора 1, расположенных в плоскостях А-а, В-b, С-с, сдвинутых пространственно на 120 градусов, размещены силовые обмотки 2, 3 и 4, образующие многофазную силовую обмотку. Ротор 5 синхронной реактивной машины выполнен явнополюсным. В примере синхронной реактивной машины, изображенном на фиг.1, длины полюсной дуги ротора и межполюсного промежутка равны и составляют 90 градусов. Кроме многофазной силовой обмотки на статоре в пазах, расположенных в плоскостях Х-х, Y-у, проходящих через углы его пакета, размещены обмотки возбуждения 6 и 7, выполненные с полным шагом и образующие многофазную обмотку возбуждения.

Возможны и другие версии обмоток в синхронной реактивной машине: с другим числом фаз обмотки возбуждения (например, две пары обмоток, оси которых параллельны сторонам пакета) и (или) силовых обмоток (например, соединенных по схеме "звезда - обратная звезда", шестифазная звезда и др.).

На фиг.2 представлен один из возможных примеров реализации функциональной схемы автономной электрической генераторной установки, выполненной с применением предлагаемой синхронной реактивной машины. Здесь обмотки 2, 3 и 4 соединяют в "звезду" и через неуправляемый выпрямитель 8, выполненный по трехфазной мостовой схеме, подключают параллельно с аккумуляторной батареей 9 к бортовой сети постоянного тока. Обмотки 6 и 7 подключают к выходам управляемых возбудителей 10 и 11, которые идентичны друг другу. Первый вход каждого из управляемых возбудителей подключают к источнику напряжения Uзв, задающему требуемую величину тока возбуждения генератора. Второй вход каждого из тех же возбудителей подключают к выходу датчика 12 положения ротора синхронной реактивной машины. Датчик 12 механически связан с ротором 5 синхронной реактивной машины.

На фиг.3 изображены в функции угла поворота ротора α синхронной реактивной машины эпюры токов Iх и Iу в обмотках возбуждения 6 и 7 и фазные ЭДС генератора ЕA, ЕB, ЕC, наводимые в его силовых обмотках 2, 3 и 4.

За исходное состояние схемы принимается мгновенное состояние всех ее элементов, когда вращающийся по часовой стрелке ротор 5 занимает пространственное положение, как на фиг.1. На фиг.3 это положение обозначено α0. В целях наглядности изложения начало отсчета угла поворота ротора α на графиках (фиг.3) и исходное положение α0 (фиг.1) выбраны несовпадающими. В положении ротора α0, принятом за исходное, проводники одной из обмоток возбуждения (а именно обмотки 6, расположенной в плоскости Х-х), находятся напротив межполюсного промежутка ротора 5. По этой обмотке, пока она расположена напротив этого промежутка, от своего управляемого возбудителя 10 пропускают ток в направлении, указанном на фиг.1, которое принято за положительное. Здесь и далее, как это принято в учебной литературе по электрическим машинам, токи и ЭДС обмоток считаются положительными, когда они в начале фаз (начала А, В, С силовых обмоток и начала X, Y обмоток возбуждения) направлены за плоскость чертежа (см., пример, Вольдек А.И. Электрические машины: Учебник для вузов. - Л.: Энергия, 1974. - 840 с.). Величина тока в обмотке возбуждения 6 соответствует напряжению задания Uзв.

Благодаря току, протекающему по обмотке возбуждения 6, синхронная реактивная машина намагничена в продольном направлении, поэтому в проводниках обмоток, расположенных напротив полюсов ротора, наведены ЭДС вращения. При этом в проводниках, лежащих напротив верхнего полюса, знаки ЭДС положительны, а напротив нижнего - отрицательны.

В положении ротора 5, принятом на фиг.1 за исходное, наводятся ЭДС вращения: в обмотке 2 фазы А в положительном направлении, в обмотке 4 фасы С - в отрицательном направлении (фиг.3). В обмотке 3 фазы В в этом положении ротора ЭДС не наводится, т.к. ее витки располагаются напротив межполюсного промежутка, где индукция в воздушном зазоре равняется нулю. В обмотке возбуждения 7, проводники которой уложены в плоскости Y-у и которая в рассматриваемый момент времени располагается над полюсами ротора, ЭДС вращения наводится, но ток в ней отсутствует, что обеспечивается соответствующей работой возбудителей 10 и 11.

Направления токов во всех обмотках статора, соответствующие описанному исходному мгновенному положению ротора 5 синхронной реактивной машины, указаны на фиг.1.

Синхронная реактивная машина в режиме генератора работает следующим образом.

При вращении ротора синхронной реактивной машины ее полюса перемещаются поперек проводников обмоток статора. Когда края полюсов ротора 5 надвигаются на проводники обмотки 6, лежащие в плоскости Х-х (т.е. эта обмотка окажется над полюсом), то, используя сигнал датчика 12 положения ротора, с помощью управляемого возбудителя 10 ток в этой обмотке возбуждения уменьшают до нуля. На фиг.3 этот момент времени соответствует углу поворота ротора α=90 градусов.

В это же самое время проводники следующей фазы обмотки возбуждения (а именно обмотки 7, проводники которой лежат в плоскости Y-у) окажутся напротив межполюсного промежутка. В этом положении ротора 5, используя сигнал датчика 12 положения ротора, с помощью управляемого возбудителя 11 в обмотке 7 устанавливают ток соответствующим по величине сигналу задания Uзв, а по знаку положительным.

Осуществляя таким образом через каждые 90 электрических градусов переключения токов в фазных обмотках возбуждения, обеспечивают пространственное круговое движение магнитодвижущей силы возбуждения вдоль окружности воздушного зазора машины так, что эта магнитодвижущая сила перемещается синхронно с вращающимся ротором синхронной реактивной машины. Благодаря такому совместному вращательному движению ротора и магнитодвижущей силы возбуждения достигается непрерывное возбуждение электрической машины в продольном направлении.

Графики изменения токов в обмотках возбуждения и ЭДС вращения, наводимых в силовых обмотках, изображенных на фиг.3, подтверждают описанный принцип работы синхронной реактивной машины в режиме генератора. При вращении ротора по часовой стрелке (см. фиг.1), чтобы обеспечить постоянство знака магнитного потока, проходящего через ротор синхронной реактивной машины, принята следующая последовательность знаков импульсов токов в обмотках возбуждения: +Iх, +IY, -Ix, -IY. При этом каждый импульс имеет длительность 90 градусов, а все они в совокупности обеспечивают непрерывность возбуждения в течение полного оборота ротора. Пространственное положение ротора, изображенное на фиг.1, соответствует углу его поворота α0 на графике фиг.3, заключенному в диапазоне от 15 до 45 градусов.

Представленная на фиг.1 синхронная реактивная машина может работать и в режиме электродвигателя, если неуправляемый выпрямитель 8 заменить автономным инвертором. Соответствующая функциональная схема изображена на фиг.4. Здесь элементы схемы с 1 по 7 и с 10 по 12 выполняют те же функции, что и в схеме (см. фиг.2).

Для синхронной реактивной машины, работающей в режиме двигателя, могут быть сохранены без изменения схемы цепей возбуждения и графики токов возбуждения в обмотках 6 и 7, но кривые фазных напряжений, подаваемых на многофазную силовую обмотку, зависят от выбранной схемы силовых цепей автономного инвертора (АИ) 13. Так, в простейшем случае многофазный, в частности трехфазный, АИ 13 можно выполнить из трех однофазных АИ 14, 15, 16, а к выходным зажимам каждого из них подключить силовые обмотки 2, 3, 4 (см. фиг.4). Первые управляющие входы каждого из АИ 14, 15, 16 подключают к источнику напряжения Uзт, задающему требуемую величину тока АИ. Вторые управляющие входы каждого из этих АИ подключают к выходным зажимам датчика 12 положения ротора.

Чтобы обеспечить вращение синхронной реактивной машины в режиме двигателя, на ее силовые обмотки 2, 3 и 4 с выходов АИ 14, 15 и 16 подают импульсы напряжения UA, UB, UC, когда проводники этих обмоток располагаются над полюсами ротора. Так, в положении ротора α0, принятом за исходное (см. фиг.5), импульсы напряжения подаются в обмотку 2 фазы А в отрицательном направлении, в обмотку 4 фазы С - в положительном направлении. В обмотку 3 фазы В импульсы напряжения не подают, т.к. ее витки располагаются в зоне межполюсного промежутка.

Синхронная реактивная машина в режиме двигателя работает следующим образом.

При вращении ротора синхронной реактивной машины ее полюса перемещаются поперек проводников обмоток статора. Когда края полюсов ротора 5 уходят с проводников фазы А обмотки 2, лежащих в плоскости А-а (т.е. эти проводники окажутся напротив межполюсного промежутка), то, используя сигнал датчика 12 положения ротора, с помощью автономного инвертора 14 ток в этой обмотке устанавливают равным нулю. На фиг.5 этот момент времени соответствует углу поворота ротора α=45 градусов.

В момент времени, соответствующий углу поворота ротора α=75 градусов, проводники фазы В обмотки 3 окажутся над полюсами. В этом положении ротора 5, используя сигнал датчика 12 положения ротора, с помощью автономного инвертора 15 в обмотке 3 устанавливают ток соответствующим сигналу задания Uзт.

Осуществляя таким образом через каждые 30 электрических градусов переключения токов в фазных силовых обмотках, обеспечивают непрерывное создание электромагнитного момента.

Графики изменения токов Iх, IY в обмотках возбуждения, импульсов напряжения UA, UB, UC, подаваемых на силовые обмотки 2, 3 и 4, а также ЭДС вращения ЕA, ЕB, ЕC, наводимые в силовых обмотках 2, 3 и 4, изображенные на фиг.5, подтверждают описанный принцип работы синхронной реактивной машины в режиме двигателя.

Промышленная применимость предлагаемого решения.

Синхронная реактивная машина благодаря бесконтактности схемы, высокой механической прочности и жесткости ротора может быть рекомендована в первую очередь для транспортных установок, работающих в тяжелых и особо тяжелых условиях эксплуатации (например, вездеходы, промышленные тракторы). Она может быть рекомендована и для общепромышленных установок.

Синхронная реактивная машина, содержащая на статоре многофазную силовую обмотку, равномерно распределенную вдоль внутренней расточки статора и предназначенную для подключения к вентильному преобразователю, а также многофазную обмотку возбуждения с полным шагом, предназначенную для подключения к управляемым возбудителям, отличающаяся тем, что пакет сердечника статора выполнен в виде квадрата, при этом обмотка возбуждения размещена в дополнительных пазах, которые выполнены в углах пакета.



 

Похожие патенты:

Изобретение относится к области электротехники и предназначено для использования в различных электротехнических устройствах с вращательным и линейным движением подвижных органов.

Изобретение относится к области электротехники, а именно к электрическим двигателям (синхронным, с вентильным управлением, шаговым), предназначенным для привода электрических исполнительных механизмов и устройств.

Изобретение относится к электротехнике, а более конкретно к электрическим синхронным генераторам переменного тока. .

Изобретение относится к области электротехники, а именно электрическим машинам индукторного типа с коммутацией магнитного потока, и может быть использовано для получения электроэнергии в системах, условия работы которых не допускают применения щеточных электрических контактов.

Изобретение относится к области электротехники, а именно к конструкциям электрических машин переменного тока с разделенными магнитопроводами. .

Изобретение относится к электротехнике, а именно к электрическим машинам переменного тока и касается особенностей их конструктивного выполнения. .

Изобретение относится к электротехнике и касается особенностей конструктивного выполнения индукторных электрических машин. .

Изобретение относится к электротехнике, а точнее к электрическим машинам для бытовой техники, например для стиральных машин, электронасосов и кухонных комбайнов. .

Изобретение относится к области электротехники и ксается выполнения индукторных электрических мешин, которые могут быть использованы в качестве двигателей, генераторов или электромагнитных муфт.

Изобретение относится к области электроэнергетики, а именно - к индукторным электрическим машинам с зубчатыми ротором и статором. .

Изобретение относится к области электротехники и предназначено для использования в различных электротехнических устройствах с вращательным и линейным движением подвижных органов.

Изобретение относится к области электрических машин, в частноси к многофазным электрическим машинам, имеющим зубчатую структуру полюсов магнитной цепи. .

Изобретение относится к области электротехники, а именно - к конструкциям электродвигателей с большим отношением длины к диаметру, и может быть использовано при конструировании электродвигателей, предназначенных для работы в погруженном состоянии и используемых в качестве привода в погружных насосных агрегатах для добычи пластовой жидкости из нефтяных скважин.

Изобретение относится к области электротехники, в частности - к синхронным электродвигателям с реактивными роторами, и может быть использовано в промышленных, транспортных и приборных электромеханических системах.

Изобретение относится к электротехнике и может быть использовано в системах регулируемого электропривода с реактивными индукторными двигателями. .

Изобретение относится к электрическим машинам, а именно к индукторным генераторам. .

Изобретение относится к области электротехники и касается конструкции бесконтактных электрических двигателей, предназначенных для использования в промышленности в качестве электроприводов механизмов большой и средней мощности, работающих от сети однофазного переменного тока, преобразующих электрическую энергию в механическую, например, на электрифицированных железных дорогах в электровозах, электротранспорте.

Изобретение относится к области электротехники и направлено на усовершенствование переключаемой электромагнитной схемы, в которой катушки намотаны в прямом (по часовой стрелке) и обратном (против часовой стрелки) направлении.

Изобретение относится к электротехнике, а именно к электрическим машинам, более конкретно - к электродвигателю, и может быть использовано, в частности, для рулевого сервопривода автопилота летательного аппарата для создания упрощенной конструкции электродвигателя с более высокими удельными энергетическими показателями.

Изобретение относится к области электротехники, а точнее к высокооборотным электрическим машинам для бытовой техники, и может быть использовано в производстве, например, пылесосов или сепараторов.

Изобретение относится к области электротехники и электромашиностроения и может быть использовано при создании высокооборотных синхронных электрических машин с постоянными магнитами.
Наверх