Способ получения фурилгетарилметанов, содержащих тиено[2,3-b]пиридиновый фрагмент

Изобретение относится к разработке способа получения производных фурилгетарилметанов общей формулы I,

которые могут найти применение как полупродукты для получения новых полициклических производных тиено[2,3-b]пиридина. Способ получения фурилгетарилметанов, содержащих тиено[2,3-b]пиридиновый фрагмент общей формулы I, заключается в образовании фурилгетарилметановой структуры в результате катализируемого кислотами алкилирования фуранового кольца; реакцию проводят при кипячении спиртов ряда 3-амино[2,3-b]пиридина и 2-метилфурана в диоксане в присутствии 0,2-0,4 мл кислотного катализатора, представляющего собой смесь 70%-ной хлорной кислоты, уксусного ангидрида и ледяной уксусной кислоты в соотношении HClO4:(СН3СО2)О:СН3СООН=0,056:0,033:0,052 моль в течение 1,5-8 часов. Это позволяет формировать новую гетероциклическую систему фурилгетарилметанов, содержащих тиено[2,3-b]пиридиновый фрагмент, в результате алкилирования 2-метилфурана 2-гидрокси(фенил)метил-4,6-дизамещенными-3-замещенными карбоксамидотиено[2,3-b]пиридинами. 3 табл.

 

Изобретение относится к области органической химии - синтезу гетероциклических соединений - фурилгетарилметанов, содержащих тиено[2,3-b]пиридиновый фрагмент.

Изобретение относится к разработке способа получения производных фурилгетарилметанов общей формулы I,

которые могут найти применение как полупродукты для получения новых полициклических производных тиено[2,3-b]пиридина.

В настоящее время среди существующих методов образования фурилметановых структур наиболее известны способы, включающие алкилирование фурановых соединений различными ароматическими и гетероароматическими спиртами [Castagnino, E.Tetrahedron Lett. 1985, 57, 6399, A.V.Butin, T.A.Stroganova, I.V.Lodina, G.D.Krapivin Tetrahedron Lett., 2001, 42, 2031], катализируемые кислотами конденсации фурановых субстратов с карбонильными соединениями [Algarra, F., Avelino Corma Hermenegildo Garcia, Primo, J. Applied Catalysis A: General, 1995, 128, 119; Nair, V., Thomas, S., Mathew, S. C., Abhilash K.G., Tetrahedron, 2006, 62, 6731; A.B.Бутин, T.A.Строганова, В.Т.Абаев, В.Е.Заводник ХГС, 1996, 2, 168].

Однако большинство этих методов позволяют получать симметричные метановые структуры, тогда как синтез несимметричных структур требует применения либо специфических реагентов (Katritzky, A.R.; Xie, L.; Fan, W.Q.J. Org. Chem. 1993, 58, 4376. Katritzky, A.R.; Li, J.J. Org. Chem. 1995, 60, 638; Naef, R. Dyes and Pigments, 1981, 2, 57) либо приводит к относительно невысоким выходам целевых продуктов. Кроме того, эти способы пригодны для получения фурилметановых структур, в которых в состав молекул наряду с фурановым кольцом входит фенильный (арильный) или простой гетероциклический заместитель. Методы же синтеза метанового каркаса, содержащего сложный конденсированный гетероциклический фрагмент (а именно, тиено[2,3]пиридиновый), в литературе отсутствуют.

Известен способ, в котором для формирования фурилметановой структуры используется алкилирование фуранового субстрата замещенными бензгидролами [А.V.Butin, T.A.Stroganova, I.V.Lodina and G.D.Krapivin / Tetrahedron Lett, 2001, 42, 2031; A.V.Butin, S.К.Smimov, T.A.Stroganova, W.Bender and G.D.Krapivin / Tetrahedron, 2007, 63, 474].

Техническим результатом является формирование новой гетероциклической системы - фурилгетарилметанов, содержащих тиено[2,3-b]пиридиновый фрагмент, в результате алкилирования 2-метилфурана 2-гидрокси(фенил)метил-4,6-дизамещенными-3-замещенными карбоксамидо-тиено[2,3b]пиридинами.

Технический результат достигается тем, что в способе получения фурилгетарилметанов, содержащих тиено[2,3-b]пиридиновый фрагмент общей формулы I

включающем образование фурилгетарилметановой структуры в результате катализируемого кислотами алкилирования фуранового кольца; реакцию проводят при кипячении спиртов 2 и 2-метилфурана в диоксане в присутствии 0,2-0,4 мл кислотного катализатора, представляющего собой смесь 70%-ной хлорной кислоты, уксусного ангидрида и ледяной уксусной кислоты в соотношении HClO4:(СН3CO)2О:СН3СООН=0,056:0,033:0,052 моль в течение 1,5-8 часов.

Отличием предлагаемого способа получения производных фурилгетарилметана I является использование в качестве исходного соединения синтетически легко доступных спиртов ряда 3-аминотиено[2,3-b]пиридина [Липунов M.M., N1-[2-гидроксиалкил(арил)метилтиено[2,3-b]пиридин-3-ил]ариламиды в синтезе 4Н-пиридо[3',2':4,5][3,2-d][1,3]оксазинов и 2-алкоксиариламиды в синтезе 4Н-пиридо[3',2':4,5][3,2-а][1,3]оксазинов и 2-алкокси(фенил)метил-3карбоксамидотиено[2,3-b]пиридтов / Липунов М.М., Костенко Е.С., Кайгородова Е.А., Фирганг С.И., Крапивин Г.Д. // Изв. Вузов. Химия и химическая технология. - 2005. - т.48, вып.12. - С.81-84].

Применение в качестве кислотного катализатора смеси 70%-ной хлорной кислоты, уксусного ангидрида и уксусной кислоты (HClO4:(СН3CO)2О:СН3СООН в соотношении 0,056:0,033:0,052 моль) позволяет проводить реакцию в отсутствии воды (уксусный ангидрид выступает в роли водоотнимающего средства, связывая воду, содержащуюся в хлорной кислоте, а также воду, выделяющуюся в ходе реакции).

Осуществление реакции в безводной среде дает возможность даже в условиях длительного контакта с кислотным катализатором в значительной степени сократить осмоление фуранового субстрата и уменьшить количество побочных превращений как исходных метанолов 2а-ж, так и образующихся в ходе реакции фурилгетарилметанов 1а-ж. Следствием этого являются довольно высокие выходы целевых продуктов.

Выбор в качестве растворителя безводного диоксана объясняется, во-первых, хорошей растворимостью в нем исходных спиртов при нагревании. Во-вторых, способность диоксана давать комплексы с молекулами хлорной кислоты превращает последнюю в более мягкий катализатор, не вызывающий сильного осмоления 2-метилфурана даже при кипячении реакционной смеси.

Все вышесказанное способствует протеканию реакции и позволяет достичь полной конверсии исходных веществ в производные фурилгетарилметана в течение 1,5-8 часов без значительного смолообразования в ходе реакции, что в свою очередь снижает потери при очистке и способствует получению высоких выходов целевых продуктов.

На основании полученных экспериментальных данных установлено, что оптимальным является проведение реакции при кипячении реагентов в диоксане с добавлением катализатора 0,2-0,4 мл на 5 ммоль спирта 2а-ж, поскольку в этом случае выходы фурилгетарилметанов достигают 60-95%, а длительность процесса составляет 1,5-8 часов.

Таким образом, совокупность существенных признаков, изложенных в формуле изобретения, позволяет достичь желаемого технического результата.

Индивидуальность и строение синтезированных соединений 1а-ж подтверждены данными 1H ЯМР-спектроскопии и элементного анализа.

Ниже приведены примеры осуществления заявляемого способа получения производных фурилгетарилметана 1.

Исходные спирты ряда тиено[2,3-b]пиридина получены по методике, аналогичной приведенной в работе [Ляпунов М.М., N1-[2-гидроксиалкил(арил)метилтиено[2,3-b]пиридин-3-ил]ариламиды в синтезе 4Н-пиридо[3',2':4,5][3,2-d][1,3]оксазинов и 2-алкоксиариламиды в синтезе 4Н-пиридо[3',2':4,5][3,2-d][1,3]оксазинов и 2-алкокси(фенил)метил-3-карбоксамидо-тиено[2,3-b]пиридинов / Ляпунов М.М., Костенко Е.С., Кайгородова Е.А., Фирганг С.И., Крапивин Г.Д. // Изв. Вузов. Химия и химическая технология. - 2005. - т.48, вып.12. - С.81-84].

Физико-химические характеристики спиртов 2а-ж приведены в таблице 1.

Таблица 1

Физико-химические характеристики спиртов 2 а-ж

СтруктураТпл, °СВычислено/Найдено, %1H ЯМР(300 МГц),
СНNOSδ (м.д.), КССВ (J, Гц)
122-1232,54 (с, 6Н, СН3), 5,97 (д, 1Н, J=5,8, CH), 6,03 (д, 1Н, J=5,8, ОН), 6,88 (с, 1Н, НРу), 7,15-7,19 (м, 1Н, H4Ph), 7,22-7,26 (м, 2Н, H3,5ph), 7,41 (д, 2Н, J=7,9, H2,6Ph), 7,45-7,50 (м, 2Н, Н3',5'Ph), 7,52-7,56 (м, 1Н, H4'Ph); 8,00 (д, 2Н, J=8,0, H2,6Ph), 9,84 (с, 1Н, NH)
26137-1382,47 (с, 6Н, СН3), 6,02 (д, 1Н, J=4,41, CH), 6,36 (с, 1Н, ОН), 6,72 (с, 1Н, Н3Fur), 7,02 (с, 1Н, НРу), 7,17-7,34 (м, 4Н, НPh4Fur), 7,37 (д, 2Н, J=6,60, H2,6Ph), 7,95 (с, 1Н, Н2Fur), 9,97 (уш.с., 1Н, NH)

257-2586,12 (д, 1Н, J=4,39, CH), 6,44 (д, 1Н, J=4,40, ОН), 7,06-7,54 (м, 18Н, HPh), 7,74 (с, 1Н, НРу), 8,15-8,26 (M, 2H, HPhCO), 9,54 (c, 1H, NH)
157-1582,58 (с, 3H, СН3), 3,21 (с, 3H, -СН2ОСН3), 4,73 (д, 1Н, J=13,5); 4,77 (д, 1Н, J=13,5); 6,03 (д, 1Н, J=5,9, CH), 6,45 (д, 1Н, J=5,9, ОН), 7,21-7,25 (м, 1Н, Н4Ph), 7,27-7,31 (м, 2Н, Н3,5Ph); 7,37 (д, 2Н, J=8,0, H2,6Ph), 7,55-7,59 (м, 2Н, Н3'5'Ph), 7,62-7,66 (м, 1Н, H4'Ph); 7,96 (д, 2Н, J=8,1, H2',6'Ph), 9,98 (уш.с, 1Н, NH)
163-1642,66 (с, 3H, СН3), 3,21 (с, 3H, СН2ОСН3), 4,70 (д, 1Н, J=13,5); 4,74 (д, 1Н, J=13,5); 6,01 (д, 1Н, J=6,0, CH), 6,43 (д, 1Н, J=6,0, ОН), 6,59 (дд, 1Н, J=3,6, J=1,9, Н4Fur), 7,32 (д, 1Н, J=3,6, Н3Fur), 7,19-7,23 (м, 1Н, Н4Ph); 7,25 (с, 1Н, НРу), 7,25-7,29 (м, 2Н, Н3,5Ph), 7,35 (д, 2Н, J=7,8, Н2,6Ph), 7,97 (д, 1Н, J=1,9, H5Fur); 9,91 (уш.с, 1H, NH)
165-1662,6 (с, 3H, СН3-Pr), 3,27 (с, 3H, ОСН3), 4,75 (с, 2Н, ОС2ОСН3), 6,03 (д, 1Н, J=1,96,СН), 6,51 (д, 1Н, J=2,93, ОН), 7,21-7,41 (м, 7Н, HPh+HPy+H4Tf), 7,91 (д, 1Н, J=4,39, Н3Tf, 7,96 (д, 1Н, J=3,42, H5Tf), 10,04 (с, 1Н, NH)

200-2011,96 (с, 3H, СН3-Fur), 6,00 (с, 1Н, СН), 6,22 (с, 1Н, ОН), 6,50 (д, 1Н, J=2,44, HFur), 6,88 (д, 1Н, HFur), 7,25 (д, 2Н, J=7,33, Н3",5"Ph), 7,80 (д, 2Н, J=7,32, Н3',5'Ph), 7,96 (с, 1Н, НРу), 8,20 (д, 2Н, J=6,84, Н3,5Ph), 9,97 (с 1H, NH)
Таблица 2

Физико-химические характеристики исходных соединений
Структура, названиеБрутто формуламолекулярная массаТ кип, °СПлотность, г/мл
Сильван С5Н6О82,1063-660,910
Хлорная кислота HClO4100,461,664
Уксусная кислота СН3СООНС2Н4O60,05117-1181,049
Уксусный ангидрид (СН3СО)2OС4Н6О3102,09138-1401,082
Диоксан C4H8O288,11100-1021,034

Пример 1.

N{2-[(5-метил-2-фурил)(фенил)метил]-4,6-диметил-тиено[2,3-b]пиридин-3-ил}бензамид 1a

Смесь спирта 2а (5 ммоль), сильвана (7,5 ммоль) и 0,3 мл катализатора - смесь 70%-ной хлорной кислоты HClO4 0,033 моль, уксусного ангидрида (СН3СО)2O 0,056 моль и уксусной кислоты СН3СООН 0,052 моль - кипятят в диоксане (20 мл) в течение 4 часов до полного израсходования исходного вещества. Контроль осуществляют методом тонкослойной хроматографии (ТСХ). По окончании реакции реакционную смесь выливают в воду (100 мл) и нейтрализуют NaHCO3 до рН≈7. Выпавший кристаллический осадок отделяют фильтрацией, сушат и перекристаллизовывают с силикагелем из смеси этилацетат/петролейный эфир, получая соединение 1а в виде белых кристаллов с выходом 80%. Тпл. 229-230°С. 1H NMR (500 MHz, ДМСО):

δ=2,2 (с, 3H, СН3-Fur), 2,5 (с, 6Н, СН3-Ру), 5,85 (с, 1Н, СН), 6,01 (д, 1Н, J=2,93, HFur), 6,03 (д, 1Н, J=2,93, HFur), 7,05 (с, 1Н, НPy), 7,2-7,4 (м, 5Н, НPh), 7,5-7,65(м, 3H, HCOPh), 7,9 (д, 2Н, J=, Н3,5PhCO), 10,12 (с, 1Н, NH). Вычислено для C28H24N2O2S: С 74,31, Н 5,35, N 6,19, О 7,07, S 7,09. Найдено: С 73,05, Н 5,21, N 6,30, O 7, 13, S 6,93.

Пример 2.

N-{2-[(5-метил-2-фурил)(фенил)метил]-4,6-диметилтиено[2,3-b]-пиридин-3-ил}бензамид 1а получают аналогично, но катализатор добавляют в количестве 0,1 мл.

Длительность реакции в этом случае составляет 5 часов 30 минут (контроль ТСХ), выход продукта реакции 73%.

Пример 3.

N-{2-[(5-метил-2-фурил)(фенил)метил]-4,6-диметилтиено[2,3-b]-пиридин-3-ил}бензамид 1a получают аналогично, но катализатор добавляют в количестве 0,2 мл.

Длительность реакции в этом случае составляет 4 часа 45 минут (контроль ТСХ), выход продукта реакции 76%.

Пример 4.

N-{2-[(5-метил-2-фурил)(фенил)метил]-4,6-диметилтиено[2,3-b]пиридин-3-ил}бензамид 1a получают аналогично, но катализатор берут в количестве 0,5 мл. Длительность реакции в этом случае составляет 3 часа 40 минут (контроль ТСХ), выход продукта реакции - 61%.

Как следует из приведенных примеров, на продолжительность процесса влияет количество катализатора. Увеличение доли катализатора в смеси ускоряет процесс, но снижает выходы продукта реакции из-за его частичного осмоления.

Таким образом, оптимальным вариантом является проведение реакции в присутствии 0,2-0,4 мл катализатора на 5 ммоль спирта 2а при температуре кипения растворителя, поскольку в этом случае выход N-{2-[(5-метил-2-фурил)(фенил)метил]-4,6-диметил-тиено[2,3-b]пиридин-3-ил}бензамида 1а достигает 80%, а длительность процесса составляет 4 часа.

Заявляемым способом получен ряд гетарилфурилметанов 1а-ж, для которых в таблице 3 приведены длительность реакции, выходы, температуры плавления и спектральные характеристики.

Таблица 3

Выходы и физико-химические характеристики производных гетарилфурилметана 1а-ж

структураПродолжить реакции, часовКол-во катализатора, млВыход, %tпл, °СБрутто-формулаНайдено, %
Вычислено, %1Н ЯМР-спектр (300 МГц), δ (м.д.), КССВ (J, Гц)
СНNОS
1a4,00,380229-230C28Н24N2O2S2,21 (с, 3H, СН3-Fur), 2,5 (с, 6Н, СН3-Ру), 5,85 (с, 1Н, СН), 6,01 (д, 1Н, J=2,93, HFur), 6,06 (д, 1Н, J-3,05, HFur), 7,06 (с, 1Н, НРу), 7,26 (д, 2Н, J=7,94, H2,6Ph), 7,30-7,35 (м, 3H, HPh), 7,65-7,51 (м, 3H,

HPhCO), 7,97 (д, 2Н, J=7,94, H2'5'Ph), 10,13 (с, 1H,NH)
50,395229-230C29H26N2O3S2,2 (с, 3H, СН3-Fur), 2,5 (с, 6Н, 2СН3-Ру), 5,81 (с, 1Н, СН), 6,02 (д, 1Н, J=2,93, HPur), 6,06 (д, 1Н, J=2,93, HPur), 6,71 (т, 1Н, J=1,46, H4FurCO), 7,05 (c, 1Н, HFur), 7,05 (c, 1Н, Н3FurCO), 7,20-7,38 (м, 6Н, НPhPy), 7,94 (с, 1Н, H5FurCO), 10,03 (с, 1Н, NH)
1,50,271198-199C38H28N2O2S2,2 (с, 3H, СН3-Fur), 5,92 (с, 1Н, СН), 6,04 (д, 1Н, J=2,93, HFur), 6,10 (д, 1Н, J=2,93, HFur), 7,02-7,55 (м, 18Н, HPh), 7,76 (c, 1Н, HPy), 8,19 (д, 2Н, J=6,35, Н3,5PhCO), 9,65 (с, 1H, NH)
7,00,275204-205C27H24N2O4S2,22 (с, 3H, СН3-Fur), 2,58 (с, 3H, СН3-Ру), 3,28 (с, 3H, ОСН3), 4,76 (д, 1Н, J=13,97, СН2ОСН3), 4,79 (д, 1Н, J=13,97, СН2ОСН3), 5,86 (с, 1Н,

СН), 6,0 (д, 1Н, J=2,82, HFur), 6,10 (д, 1Н, J=2,82, НFur), 7,3 (с, 1Н, НРу), 7,52-7,66 (м, 3H, HPh), 7,97 (д, 2Н, J=7,36, Н3,5PhCO), 10,02 (с, 1Н, NH)
7,00,380144-145С26Н22N2O3S2,22 (с, 3H, СН3-Fur), 2,6 (с, 3H, СН3-Ру), 3,27 (с, 3H, ОСН3), 4,78 (с, 2Н, СН2ОСН3), 5,82 (с, 1Н, СН), 6,0 (д, 1Н, J=2,93, НFur), 6,06 (д, 1Н, J=2,93, HFur), 6,73 (дд, 1Н, J=1,46, J=H4FurCO), 7,21-7,36 (м, 7Н, НPhРу+Н2FurCO), 7,96 (д, 1Н, J=0,97, H5FurCO), 9,98 (c, 1H, NH)
1e8,00,382197-198C26H22N2O2S22,22 (с, 3H, СН3-Fur), 2,6 (с, 3H, СН3-Ру), 3,27 (с, 3H, ОСН3), 4,78 (с, 2Н, СН2ОСН3), 5,82 (с, 1Н, СН), 6,03 (д, 1Н, J=2,93, НFur), 6,07 (д, 1Н, J=2,93, HFur), 7,21-7,37 (м, 8Н, HPh+HPy+H4Tf); 7,88 (д, 1Н, J=4,88, H3Tf),

7,97 (д, 1Н, J=3,91, H5Tf), 10,08 (с, 1Н, NH)
2,50,460218-219С37Н28N2O381,89 (с, 3H, СН3-Fur1), 2,23 (с, 3H, СН3-PFur2), 6,02 (с, 1Н, СН), 6,10 (д, 2Н, J=2,93, HFur1), 6,90 (д, 2Н, J=2,94, HFur2), 7,21-7,35 (м, 5Н, HPh'), 7,41-7,59 (м, 6Н, Н3,4,5Ph3',4',5'Ph), 7,77 (д, 2Н, J=7,33, H2,6Ph), 7,97 (с, 1Н, НРу), 8,18 (д, 2Н, J=6,60, H2',6'Ph), 10,08 (с, 1Н, NH)

Способ получения фурилгетарилметанов, содержащих тиено[2,3-b] пиридиновый фрагмент общей формулы I

включающий образование фурилгетарилметановой структуры формулы I в результате катализируемого кислотами алкилирования фуранового кольца, реакцию проводят при кипячении 2-гидрокси(фенил)метил-4,6-дизамещенных-3-замещенных карбоксамидотиено[2,3-b]пиридинов и 2-метилфурана в диоксане в присутствии 0,2-0,4 мл кислотного катализатора, представляющего собой смесь 70%-ной хлорной кислоты, уксусного ангидрида и ледяной уксусной кислоты в соотношении HClO4:(СН3СО)2О:СН3СООН=0,056:0,033:0,052 моль в течение 1,5-8 ч.



 

Похожие патенты:

Изобретение относится к новым фотохромным мономерам Alk=СН3-С10 Н21Х=Cl, Br, I, F, NH 2, СН2ОН, CH2 Cl, CH2Br, CHO, СО2 Н, к способу их получения, к фотохромным полимерам-полиазометинам, которые являются обратимо фотоуправляемыми за счет введения в их структуру фотохромных фрагментов из класса дигетарилэтенов.

Изобретение относится к новым фотохромным мономерам и новым полимерам на их основе, предназначенным для создания двухфотонных фотохпромных регистрирующих сред для трехмерной оптической памяти и фотопереключателей оптических сигналов.

Изобретение относится к области органической химии - синтезу гетероциклических соединений - производных 8H-тиено[2,3-b]индола, представляющих интерес для получения новых препаратов сельскохозяйственного назначения.

Изобретение относится к 2,2'-ди(3,4-алкилендиокситиофен)ам общей формулы (I), где A, R и х имеют указанные в описании значения, которые предназначены для получения электропроводных или полупроводных соединений и ценных полупродуктов для -конъюгированных полимеров.

Изобретение относится к новым спироциклическим производным циклогексана общей формулы I в которой R1-R3, R 5-R10, W, X раскрыты в пункте 1 формулы

Изобретение относится к соединению общей формулы 1 или его таутомеру или фармацевтически приемлемой соли, где W выбран из N и CR4; Х выбран из CH(R8), О, S, N(R8), C(=O), C(=O)O, C(=O)N(R8), OC(=O), N(R8)C(=O), C(R8)=CH и C(=R 8); G1 - бициклическое или трициклическое конденсированное производное азепина, выбранное из общих формул 2-9, или производное анилина общей формулы 10, где А1, А4, А 7 и А10 независимо выбраны из СН2 , С=O, О и NR10; А2, А3, А 9, А11, А13, А14, А 15, А19 и А20 независимо выбраны из СН и N; либо А5 означает ковалентную связь, и А 6 представляет собой S; либо А5 означает N=CH, и А6 представляет собой ковалентную связь; А8 , А12, А18 и А21 независимо выбраны из СН=СН, NH, NCH3 и S; А16 и А 17 оба представляют собой CH2, или один из А 16 и А17 представляет собой СН2, а другой выбран из С=O, СН(ОН), CF2, О, SOc и NR10; Y выбран из СН=СН или S; R1 и R2 независимо выбраны из Н, F, Cl, Br, алкила, CF 3 и группы O-алкил; R3 выбран из Н и алкила; R4-R7 независимо выбраны из Н, F, Cl, Br, алкила, CF3, ОН и группы O-алкил; R8 выбран из Н, (СН2)bR9 и (C=O)(CH 2)bR9; R9 выбран из Н, алкила, возможно замещенного арила, возможно замещенного гетероарила, ОН, групп O-алкил, ОС(=O)алкил, NH2, NHалкил, N(алкил) 2, СНО, CO2Н, CO2алкил, CONH 2, CONHалкил, CON(алкил)2 и CN; R10 выбран из Н, алкила, группы СОалкил и (CH2)d OH; R11 выбран из алкила, (CH2)d Ar, (CH2)dOH, (CH2)d NH2, группы (CH2)dСООалкил, (CH2)dCOOH и (CH2)d OAr; R12 и R13 независимо выбраны из Н, алкила, F, Cl, Br, СН(ОСН3)2, CHF2 , CF3, групп СООалкил, CONHалкил, (CH2) dNHCH2Ar, CO(алкил)2, СНО, СООН, (CH2)dOH, (CH2)dNH 2, N(алкил)2, CONH(CH2)d Ar и Ar; Ar выбран из возможно замещенных гетероциклов или возможно замещенного фенила; а выбран из 1, 2 и 3; b выбран из 1, 2, 3 и 4; с выбран из 0, 1 и 2; и d выбран из 0, 1, 2 и 3

Изобретение относится к области органической химии, конкретно к способу получения гексахлорантимонатов 2,3-дигидро[1,3]тиазолия, который может найти применение в тонком органическом синтезе, в производстве лекарственных препаратов, биологически активных веществ

Изобретение относится к соединениям формул I или II в форме их солей, рацематов, рацемических смесей и чистых энантиомеров, а также их диастереомеров и их смесей

Изобретение относится к соединению формулы (I) где R выбран из этила, н-пропила, изо-пропила, н-бутила и аллила; R' выбран из водорода, неразветвленного, разветвленного или циклического С1-С4алкила; неразветвленного, разветвленного или циклического C1 -С3алкокси; фтора, хлора, брома, трифторометила и OCHxFy, где x=0, 1, 2, y=1, 2, 3 при условии, что х+у=3; R'' выбран из водорода, фтора и хлора, с условием, что R'' выбран из фтора и хлора только, когда R' выбран из фтора и хлора; R3 выбран из водорода и неразветвленного, разветвленного или циклического C1-C5алкила; R4 выбран из водорода, CH2OCOC(СН3 )3, фармацевтически приемлемых неорганических или органических катионов, и COR4', где R' - неразветвленный, разветвленный или циклический C1-С5алкил, фенил, бензил и фенэтил; R7 выбран из метила и этила; один из А и В является серой, а другой - C-R2; когда А означает S, R2 выбран из водорода и метила, с условием что R2 означает метил только, когда R3 не является водородом; и когда В означает S, R2 является водородом; и к их любому таутомеру, а также к фармацевтической композиции, включающей соединение формулы (I), к способу получения этих соединений и способу лечения заболеваний, являющихся результатом аутоиммуного ответа или патологического воспаления
Наверх