Сплав на основе ниобия

Изобретение относится к металлургии и может быть использовано для изготовления изделий, работающих в условиях механических нагрузок при повышенных температурах. Для повышения прочности сплава в условиях повышенных температур он имеет следующий состав, мас.%: молибден 8,5-9,5; цирконий 2,0-3,0; углерод 0,01-0,03; азот 0,05-0,1; лантан 0,1-0,15; рений 1,3-1,7; бор 0,005-0,01; ниобий - остальное. Предел прочности сплава при 1200°С составит 23-24 кг/мм2. 1 табл.

 

Изобретение относится к области металлургии и касается составов сплавов на основе ниобия, которые могут быть использованы для изготовления изделий, работающих в условиях механических нагрузок при повышенных температурах.

Известен сплав на основе ниобия, содержащий, мас.%: молибден 8,5-12,5; цирконий 2,0-4,0; углерод 0,1-0,3; азот 0,3-1,5; лантан 0,005-0,1; ниобий - остальное [1]. Предел прочности такого сплава при температуре 1200°С составляет 19-21 кг/мм2.

Задачей изобретения является повышение прочности сплава в условиях повышенных температур.

Технический результат достигается тем, что сплав на основе ниобия, содержащий молибден, цирконий, углерод, азот, лантан, дополнительно содержит рений и бор при следующем соотношении компонентов, мас.%: молибден 8,5-9,5; цирконий 2,0-3,0; углерод 0,01-0,03; азот 0,05-0,1; лантан 0,1-0,15; рений 1,3-1,7; бор 0,005-0,01; ниобий - остальное.

В таблице приведены составы сплава.

Таблица
КомпонентыСодержание, мас.% в составах
123
Молибден8,59,09,5
Цирконий3,02,52,0
Углерод0,030,020,01
Азот0,050,080,1
Лантан0,150,120,1
Рений1,31,51,7
Бор0,010,0070,005
Ниобийостальноеостальноеостальное
Предел прочности при температуре 1200°С, кг/мм223-2423-2423-24

В составе сплава на основе ниобия компоненты проявляют себя следующим образом. Углерод и лантан измельчают крупнозернистую столбчатую структуру сплава. Бор способствует образованию мелкозернистой структуры с относительно равномерным распределением локальных включений. Азот и молибден увеличивают твердость сплава, а цирконий и рений препятствуют его охрупчиванию.

Слитки сплава на основе ниобия могут быть получены методом электронно-лучевой плавки. Сплав подлежит закалке при температуре 1800°С и старению при температуре 1000°С в течение 1 часа (в вакууме).

Источник информации

1. SU 533660, 1976.

Сплав на основе ниобия, содержащий молибден, цирконий, углерод, азот, лантан, отличающийся тем, что он дополнительно содержит рений и бор при следующем соотношении компонентов, мас.%:

молибден8,5-9,5
цирконий2,0-3,0
углерод0,01-0,03
азот0,05-0,1
лантан0,1-0,15
рений1,3-1,7
бор0,005-0,01
ниобийостальное



 

Похожие патенты:

Изобретение относится к получению ниобиевой проволоки, пригодной для применения в качестве проволочного вывода для ниобиевых, ниобийоксидных или танталовых конденсаторов.
Изобретение относится к области металлургии и касается составов сплава на основе ниобия, которые могут быть использованы для изготовления изделий, работающих в условиях механических нагрузок при повышенных температурах.
Изобретение относится к области металлургии и касается составов сплавов на основе ниобия, которые могут быть использованы для изготовления изделий, работающих в условиях механических нагрузок при повышенных температурах.
Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе Nb-Al для изготовления деталей авиационно-космической техники, работающих при температурах до 1600°С.
Изобретение относится к получению ниобийсодержащих материалов, используемых для получения специальных сталей. .
Изобретение относится к области металлургии, а именно к производству лигатур тугоплавких металлов, используемых для легирования титановых сплавов, методом алюминотермической плавки.

Изобретение относится к цветной металлургии, в частности к сверхпроводящим соединениям. .

Изобретение относится к цветной металлургии, в частности к сверхпроводящим соединениям. .

Изобретение относится к металлам, в частности к танталу, и изделиям, приготовленным из тантала, а также к способам получения и переработки тантала. .
Изобретение относится к области цветной металлургии и может быть использовано при производстве сплавов титана
Изобретение относится к области металлургического производства распыляемых металлических мишеней для микроэлектроники, а также к изготовлению интегральных схем и тонкопленочных конденсаторов на основе тантала и его сплавов

Изобретение относится к области металлургии, в частности к жаропрочным дисперсно-упрочненным сплавам на основе ниобия и способам их получения, и может быть использовано для изготовления деталей авиационно-космической техники, работающих при температурах до 1600°С

Изобретение относится к области металлургии, в частности к слоистым материалам, и может быть использовано для изготовления деталей авиационно-космической техники, работающих при высоких температурах

Изобретение относится к области металлургии, в частности к эвтектическим композиционным материалам на основе ниобия, упрочненным силицидами ниобия, предназначенным для изготовления теплонагруженных изделий, и может быть использовано в авиационной и энергетической промышленности. Композиционный материал на основе ниобия, упрочненный силицидами ниобия, содержит, ат.%: кремний 15,0-17,0; титан 12,0-16,0; гафний 2,5-5,5; алюминий 2,0-4,0; хром 3,0-5,0; цирконий 4,0-6,0; молибден 8,0-12,0; иттрий 0,5-2,0; ниобий - остальное. Композиционный материал может содержать силицид ниобия Nb5Si3 и/или силицид ниобия Nb3Si. Материал характеризуется повышенными значениями кратковременной прочности. 2 н. и 3 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к сплавам на основе ниобия, которые могут быть использованы для изготовления деталей двигателей, печей, тепловых агрегатов и других изделий, работающих при повышенных температурах в условиях механических нагрузок. Сплав на основе ниобия содержит, мас.%: молибден 8,5-12,5; цирконий 2,0-4,0; углерод 0,1-0,3; лантан 0,03-0,05; вольфрам 0,8-1,0; иридий 0,05-0,1; ниобий - остальное. Сплав характеризуется повышенной прочностью при высоких температурах. 1 табл.
Изобретение относится к области металлургии, а именно к высокотемпературным композиционным материалам на основе ниобия, упрочненным оксидными волокнами, применяемым для изготовления конструкционных деталей авиационного назначения. Волокнистый композиционный материал содержит матрицу и армирующие монокристаллические волокна оксида алюминия. Матрицу из ниобия или сплава на основе ниобия получают высокоэнергетическим помолом порошка ниобия или смеси исходных порошков сплава на основе ниобия. Монокристаллические волокна оксида алюминия имеют диаметр от 50 до 500 мкм и объемную долю в композиционном материале от 10 до 60%. Композиционный материал характеризуется высокой прочностью при комнатной и повышенной температурах и максимальной рабочей температурой не менее 1700°C. 2 з.п. ф-лы, 1 табл., 4 пр.

Изобретение относится к области металлургии и может быть использовано при производстве титановых сплавов. Лигатура для титановых сплавов содержит, мас.%: ванадий 30-50, углерод 1-4, молибден 5-25, титан 5-20, алюминий 20-50, примеси - остальное. Изобретение позволяет за счет добавки в титановый расплав молибдена и титана в составе лигатуры повысить коррозионно-механическую прочность титанового сплава в 2-2,5 раза. 1 табл.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе ниобия, которые могут быть использованы для изготовления рабочих лопаток ГТД. Способ получения высокотемпературного сплава на основе ниобия включает изготовление расходуемого электрода, плавку расходуемого электрода в вакуумной дуговой печи и разливку расплава. Готовят расходуемый электрод из шихтовых материалов в виде ниобия, кремния и по крайней мере одного из легирующих элементов, включающих титан, гафний, алюминий, хром, цирконий, молибден, вольфрам, олово и иттрий, плавку расходуемого электрода осуществляют с получением слитка, который затем подвергают переплаву в вакуумной индукционной печи при температуре 1800-2100°С в инертном керамическом тигле, выполненном по крайней мере из одного из оксидов иттрия, гафния, скандия или циркония, а разливку полученного расплава осуществляют в инертную форму. Полученные заготовки имеют равноосную структуру и однородный химический состав по всему объему и могут быть использованы для последующего литья с направленной структурой, что позволяет повысить ресурс и надежность работы авиационных газотурбинных двигателей. 4 з.п. ф-лы, 4 табл., 2 пр.
Наверх