Устройство непрерывной регистрации данных для скважинного пробоотборного резервуара

Изобретение относится к отбору глубинных проб, в частности к непрерывному измерению интересующих параметров, а также к исследованиям проб углеводородов, выполняемым на месте отбора пробы после ее помещения в пробоотборную камеру скважинного прибора. Техническим результатом является непрерывный контроль целостности пробы, начиная с подъема пробы на поверхность и до ее доставки в лабораторию для анализа. Устройство содержит скважинную пробоотборную камеру для размещения пробы пластового флюида и модуль контроля, сообщающийся посредством канала для флюида с частью пробы пластового флюида в скважинной пробоотборной камере и предназначенный для контроля интересующего параметра пробы пластового флюида. Также предложен способ контроля интересующего параметра пробы пластового флюида. 2 н. и 21 з.п. ф-лы, 4 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится в целом к отбору глубинных проб, в частности к непрерывному измерению интересующих параметров, а также к исследованиям проб углеводородов, выполняемым на месте отбора пробы после ее помещения пробы в пробоотборную камеру скважинного прибора, чтобы гарантировать целостность пробы до ее передачи в лабораторию на анализ.

Уровень техники

Пластовые флюиды в нефтяных или газовых скважинах обычно представляют собой смесь нефти, газа и воды. Фазовое соотношение компонентов смеси определяется давлением, температурой и объемом пластовых флюидов, заключенных в ограниченном пространстве. В подземных породах высокое давление скважинных флюидов часто вызывает поглощение газа нефтью с образованием перенасыщенных растворов. При понижении давления поглощенные или растворенные газообразные соединения выделяются из жидкой фазы пробы. Точные измерения давления, температуры и состава пластового флюида из конкретной скважины влияют на оценку экономической целесообразности добычи флюидов из скважины. Эти данные дают также информацию относительно путей достижения максимальной эффективности заканчивания и освоения соответствующего коллектора углеводородов.

Известен ряд методов анализа скважинных флюидов в условиях скважины. В патенте US 6467544 (Brown и др.) описана пробоотборная камера с подвижным поршнем, ограничивающим полость, в которой находится проба, с одной стороны поршня и буферную полость - с другой. В патенте US 5361839 (Griffith и др., 1993) раскрыт измерительный преобразователь для выдачи сигнала, характеризующего свойства пробы флюида в условиях скважины. В патенте US 5329811 (Schultz и др., 1994) описаны устройство и способ оценки данных давления и объема для глубинной пробы скважинного флюида.

Другие методы предусматривают отбор пробы скважинного флюида для ее извлечения на поверхность. В патенте US 4583595 (Czenichow и др., 1986) раскрыт механизм с поршневым приводом для взятия пробы скважинного флюида. В патенте US 4721157 (Berzin, 1988) описана сдвижная клапанная втулка для заключения в камеру пробы скважинного флюида. В патенте US 4766955 (Petermann, 1988) описан поршень, взаимодействующий с распределительным клапаном для взятия пробы скважинного флюида, а в патенте US 4903765 (Zunkel, 1990) - скважинный пробоотборник с выдержкой времени. В патенте US 5009100 (Gruber и др., 1991) описан спускаемый на кабеле пробоотборник для отбора пробы скважинного флюида из скважины на заданной глубине. В патенте US 5240072 (Schultz и др., 1993) описан срабатывающий на затрубное давление пробоотборник многократного действия для отбора глубинных проб скважинных флюидов в разные моменты времени и на разных глубинах, а в патенте US 5322120 (Be и др., 1994) раскрыта электрогидравлическая система для отбора проб скважинного флюида из ствола скважины на больших глубинах.

В глубоких скважинах температуры часто превышают 300°F. При извлечении горячей пробы пластового флюида на поверхность, где температура составляет порядка 70°F, из-за падения температуры проба пластового флюида стремится сократиться в размерах. Если объем пробы остается неизменным, такое сокращение приводит к существенному уменьшению давления пробы. Падение давления приводит к изменениям параметров, присущих пластовому флюиду в естественном залегании (in situ), что может обусловить фазовое разделение жидкостей и газов, поглощенных пробой пластового флюида. Разделение фаз влечет за собой существенное изменение характеристик пластового флюида и уменьшает реальные возможности оценки реальных свойств пластового флюида.

Для преодоления этого недостатка были разработаны различные методы, направленные на поддержание пробы пластового флюида под давлением. В патенте US 5337822 (Massie и др., 1994) давление в пробе пластового флюида поддерживают при помощи поршня с гидравлическим приводом, приводимым в действие сжатым газом высокого давления. Аналогичным образом, в патенте US 5662166 (Shammai, 1997) для сжатия пробы пластового флюида используется газ под давлением. В патентах US 5303775 (1994) и US 5377755 (Michaels и др., 1995) раскрыт поршневой насос двустороннего действия для повышения давления в пробе пластового флюида до значения, превышающего давление насыщения, с тем, чтобы последующее охлаждение не приводило к снижению давления флюида ниже давления насыщения.

Из-за неопределенности процесса восстановления проб приходится сомневаться в достоверности результатов любых лабораторных исследований восстановленных однофазных проб нефти на PVT-свойства. При использовании обычных пробоотборных резервуаров проблему охлаждения пробы и ее разделения на две фазы пытаются свести к минимуму путем приложения к взятой в скважине пробе избыточного давления, намного превышающего пластовое давление (4500 и более фунт на кв.дюйм). Такое приложение избыточного давления - это попытка втиснуть в фиксированный объем резервуара дополнительное количество нефти, чтобы после охлаждения пробы до температуры на поверхности давление в пробе нефти было достаточным для сохранения нефти в однофазном состоянии и по меньшей мере соответствовало давлению, действовавшему на нефть в условиях скважины.

Таким образом, в пробоотборных резервуарах для сбора однофазных проб газовая подушка облегчает сохранение пробы в однофазном состоянии, поскольку при сокращении пробы нефти газовая подушка расширяется, поддерживая действующее на нефть давление. Но если нефть слишком уменьшится в объеме, газовая подушка (которая расширяется в той же степени, в которой нефть сокращается) может расшириться настолько, что создаваемое ею давление на нефть упадет ниже пластового давления, вызвав выпадение в нефти асфальтенов или образование пузырьков газа. Поэтому существует необходимость в контроле целостности пробы, начиная с подъема пробы на поверхность и до ее доставки в лабораторию для анализа.

Краткое изложение сущности изобретения

Настоящее изобретение решает задачу преодоления описанных выше недостатков уровня техники. В настоящем изобретении предлагаются устройство и способ для непрерывного контроля целостности находящейся под давлением пробы флюида, отобранной в скважине. После отбора глубинной пробы устройство непрерывной регистрации данных, прикрепленное к скважинной пробоотборной камере, периодически, т.е. через определенные промежутки времени измеряет температуру и давление глубинной пробы. Кроме того, пробу подвергают оптическому анализу с применением излучения в ближнем/среднем диапазоне инфракрасной (ИК-) области и в видимой области спектра, что позволяет на месте изучать свойства пробы и уровень ее загрязнения. Анализ пробы на месте ее отбора включает в себя определение газового фактора, плотности нефти в градусах АНИ, а также многих других параметров, которые можно оценить при помощи обученной нейронной сети или хемометрического уравнения. Кроме того, с помощью изгибного механического резонатора (т.е. резонатора, в котором возбуждаются изгибные колебания) можно измерять плотность и вязкость флюида, на основании которых можно проводить оценку дополнительных параметров, используя обученную нейронную сеть или хемометрическое уравнение. Во избежание нежелательного падения давления или других последствий отвода малой пробы в устройство непрерывной регистрации данных в пробоотборном резервуаре создают избыточное давление.

Краткое описание чертежей

Ниже сущность изобретения поясняется на примере его осуществления со ссылкой на прилагаемые чертежи, на которых одинаковые элементы конструкции обозначены аналогичными позициями и на которых показано:

на фиг.1 - схематичный геологический разрез толщи пород, иллюстрирующий среду, в которой предполагается осуществление изобретения,

на фиг.2 - схематичное изображение предлагаемого в изобретении прибора в сборе со вспомогательными инструментами,

на фиг.3 - схематичное изображение системы для извлечения и доставки на поверхность репрезентативной пробы пластового флюида,

на фиг.4 - иллюстрация примера выполнения модуля устройства непрерывной регистрации данных, предусмотренного в настоящем изобретении.

Описание предпочтительного варианта изобретения

На фиг.1 схематически представлен геологический разрез толщи 10 пород по длине пробуренной в ней скважины 11. Как правило, скважина по меньшей мере частично заполнена смесью жидкостей, включающей воду, буровой раствор и пластовые флюиды, поступающие в скважину из вскрытых скважиной пород. В данном описании такие смеси обозначаются понятием "скважинные флюиды". Понятие же "пластовый флюид" употребляется ниже в отношении флюида из конкретного пласта, не содержащего примесей и не загрязненного жидкостями, которые в данном пласте в естественном виде не встречаются.

В скважину 11 спущен пробоотборник 20, подвешенный на нижнем конце кабеля 12. Кабель 12 обычно пропускают через шкив 13, закрепленный на буровой вышке 14. Спуск и подъем кабеля производят при помощи лебедки, установленной, например, на грузовом автомобиле 15 с оборудованием для технического обслуживания.

На фиг.2 схематически представлен вариант выполнения пробоотборника 20, обеспечивающего осуществление настоящего изобретения. Инструментальные средства пробоотборника предпочтительно представляют собой компоновку с несколькими расположенными в ряд секциями, которые соединены на торцах резьбовыми втулками 23 компрессионных соединительных муфт. В состав такой компоновки могут входить гидравлический силовой агрегат 21 и агрегат 22 отбора флюида. Ниже агрегата 22 отбора флюида расположен насосный агрегат 24 объемного типа с большим рабочим объемом, предназначенный для промывки гидравлической линии. Ниже насоса с большим рабочим объемом расположен аналогичный насосный агрегат 25 объемного типа с меньшим рабочим объемом, контролируемым в количественном отношении, как это подробнее поясняется со ссылкой на фиг.3. Обычно под насосом меньшего объема располагаются одна или несколько секций 26 резервуаров-накопителей для отобранных проб флюида. Каждая секция 26 может содержать три и более резервуара-накопителя 30 для проб флюида.

Агрегат 22 отбора флюида содержит выдвижной приемный зонд 27, а с противоположной от него стороны - лапы 28 для упора в стенку скважины. Как приемный зонд 27, так и находящиеся с противоположной стороны лапы 28 выдвигаются с помощью гидропривода, входя в плотный контакт со стенками скважины. Конструкция и принцип работы агрегата 22 для отбора флюида подробнее описаны в патенте US 5303775, содержание которого включено в данное описание.

Во время транспортировки проб, содержащихся в пробоотборных резервуарах, в лаборатории по исследованию PVT-свойств или во время перемещения пробы промежуточный резервуар может оказываться под воздействием переменных температур или давлений, что приводит к колебаниям давления в резервуаре. Поэтому непрерывная регистрация давления пробы во времени дает очень важную и ценную информацию. В примере выполнения настоящего изобретения для решения этой задачи используется устройство непрерывной регистрации данных. Это устройство содержит корпус из нержавеющей стали, монтажную плату с электронными компонентами для контроля и регистрации давления, температуры и других параметров флюида, а также аккумуляторную батарею для питания монтажной платы с электронными компонентами. Устройство непрерывной регистрации данных может устанавливаться для регистрации в скважине показаний датчиков давления и температуры, а также других параметров текучей среды во время отбора проб, их извлечения, транспортировки и передачи в наземную лабораторию анализа PVT-свойств. Настоящее изобретение позволяет получать данные, характеризующие состояние пробы, во время транспортировки пробы в лабораторию. Данные, предоставляемые устройством непрерывной регистрации данных, имеют большое значение для клиента и сервисной фирмы, оказывающей услуги по отбору проб, поскольку при доставке пробы клиенту из района расположения скважины нередко случаются ошибки и аварии, которые делают очень дорогостоящую пробу бесполезной для изучения флюида на предмет выпадения твердых веществ. Клиенты не желают платить за пробы, испортившиеся из-за изменений давления и температуры. Непрерывная регистрация данных во времени позволяет клиентам проводить гораздо более точную и полную оценку качества своих проб, чем когда-либо ранее, и устанавливать источник проблемы.

Настоящее изобретение решает проблему отсутствия информации о состоянии пробы во время ее перемещения из скважинного пробоотборного резервуара в другой резервуар, например в камеру для лабораторных анализов. Предпочтительно, чтобы во время перемещения пробы ее давление всегда было выше пластового давления, что дает уверенность в том, что проба не перешла в двухфазное состояние. Предпочтительно также, чтобы действующее на пробу давление поддерживалось на уровне, превышающем давление, при котором в пробе начинается выпадение асфальтенов. Отсутствие нужного оборудования и недостаточная квалификация персонала часто приводят к проблемам при перемещении проб, на что клиенты в прошлом не обращали внимания. Однако со стороны клиентов был проявлен большой интерес к получению соответствующей информации, характеризующей картину изменения параметров пробы во времени и позволяющей правильно оценить эту проблему.

Настоящее изобретение предусматривает непрерывное снятие показаний приборов по температуре, давлению и другим параметрам пробы флюида, начиная с отбора пробы в скважине и до перемещения пробы из пробоотборного резервуара для лабораторных исследований. В предпочтительном варианте регистрацию этих данных осуществляют периодически, т.е. через определенные промежутки времени, например 10 раз в минуту, и в течение времени, составляющего до одной недели, хотя период регистрации параметров может быть продлен. Клиенту представляют диаграмму временной зависимости регистрируемых переменных, отражающей картину изменения во времени давления, температуры и других параметров пробы флюида.

Настоящее изобретение позволяет исследовать свойства пластовых флюидов, не подвергая риску пробу в целом. Одной из серьезных трудностей, с которыми сталкиваются сервисные компании, что касается любого анализа пробы, проводимого на месте ее отбора - это восстановление пробы. Если пробу тщательно не восстановить, то извлечение любой ее части для анализа на месте отбора изменит общий состав исходной пробы. Процесс восстановления либо невозможен вообще, либо зачастую очень длителен, занимая 6-8 часов, в зависимости от состава конкретной пробы.

Данное изобретение дает специалистам простой, но эффективный способ, позволяющий не только получать столь необходимую информацию о характере изменения давления, температуры и других параметров флюида во времени, но и проводить на месте отбора пробы предварительный анализ PVT-свойств и дополнительный анализ. Настоящее изобретение обеспечивает получение столь необходимых графиков временных зависимостей (давления и температуры) во время восстановления пробы, а также информации во время перемещения пробы.

Настоящее изобретение позволяет клиентам отделить ошибки лабораторий по исследованию PVT-свойств, которые могли привести к утрате пробой своего качества, от результатов работы служб, занимающихся отбором проб в условиях эксплуатации. Таким образом, настоящее изобретение позволит сервисным компаниям, оказывающим услуги по отбору проб, существенно повысить эффективность работ по выявлению и устранению ошибок при отборе проб, а также уменьшить остроту осложнений при отборе проб.

На фиг.4 показан типовой вариант осуществления изобретения. В этом варианте используется модуль устройства 710 непрерывной регистрации данных, прикрепленный к скважинному пробоотборному резервуару 712, соответствующему требованиям Министерства транспорта США. Таким образом, пробоотборный резервуар и устройство непрерывной регистрации данных можно вместе друг с другом перевезти клиенту или в лабораторию, что обеспечивает возможность непрерывной записи характеристики интересующих свойств пробы во времени (картины изменения этих показателей во времени). Как было указано выше, пробу удерживают под избыточным давлением, чтобы ее давление превышало пластовое давление. Устройство 710 непрерывной регистрации данных содержит первичный клапан 714 с ручным управлением, линию 716, соединяющую пробоотборный резервуар 712 для сбора однофазных проб и первичный клапан 714 с ручным управлением. В состав устройства непрерывной регистрации данных также входят аналитический модуль 738 для анализа проб на месте отбора, содержащий модуль 738 оптического анализа с применением излучения в ближнем/среднем диапазоне ИК-области спектра и в видимой области спектра (на чертеже подробно не показан), процессор 726 (на чертеже подробно не показан) и изгибный механический резонатор 727 (на чертеже подробно не показан). Кроме того, в состав устройства непрерывной регистрации данных входят вторичный клапан 732 с ручным управлением, отверстие 730 для извлечения пробы, датчик давления (манометр) 722 (на чертеже подробно не показан), регистратор, или самописец, 725 (на чертеже подробно не показан), а также порт 728 передачи данных. В типовом варианте осуществления изобретения устройство 710 непрерывной регистрации данных крепится к пробоотборному резервуару 712, поддавливаемому для получения проб в однофазном состоянии. В типовом варианте осуществления изобретения устройство 710 непрерывной регистрации данных крепится к пробоотборному резервуару таким образом, чтобы устанавливать сообщение между первичным клапаном 714 с ручным управлением, входящим в состав устройства непрерывной регистрации данных, и пробой 740 флюида. Проба 740 флюида поддавливается или нагружается избыточным давлением от источника давления 719, расположенного с обратной стороны поршня 721 пробоотборного резервуара, чтобы удерживать пробу 740 под давлением, предпочтительно превышающим пластовое давление. Небольшая часть пробы 740 попадает в канал 716, расположенный между закрытым первичным клапаном 714 с ручным управлением и пробой 740. Первичный клапан 714 с ручным управлением открывают, и взятый для пробы флюид поступает в канал 718, расположенный между открытым первичным клапаном 714 с ручным управлением и закрытым вторичным клапаном 732 с ручным управлением.

К устройству непрерывной регистрации данных с помощью кабеля 717 подключают портативное считывающее устройство 726. Закрытый вторичный клапан 732 с ручным управлением удерживает часть пробы флюида в канале 718, но при этом взятый для пробы флюид связан с датчиком давления 722 и регистратором 725. Питание электронного оборудования устройства непрерывной регистрации данных, включающего в себя датчик давления 722, регистратор 725 и аналитический модуль 738 для анализа пробы на месте отбора, осуществляется от аккумуляторной батареи 724.

Температура и давление замеряются датчиками температуры 729 и давления 722 (на чертеже подробно не показаны) и записываются регистратором 725 (на чертеже подробно не показан). Затем отключают портативное считывающее устройство и закрывают первичный клапан 714 с ручным управлением, запирая часть пробы между первичным и вторичным клапанами с ручным управлением. Для подключения устройства непрерывной регистрации данных к находящемуся на месте отбора проб наземному оборудованию через отверстие для извлечения пробы можно открыть вторичный клапан с ручным управлением. Аналитический модуль 738 включает в себя оборудование для анализа проб на месте отбора с применением излучения в ближнем/среднем диапазоне ИК-области спектра и в видимой области спектра для оценки целостности пробы на месте ее отбора или для исследования пробы на постоянной основе. Средства анализа с применением излучения в ближнем/среднем диапазоне ИК-области спектра и в видимой области спектра описаны в патентной заявке США №10/265991, права на которую принадлежат обладателю прав на настоящее изобретение и которая в полном объеме включена в данное описание в качестве ссылки. Таким образом, устройство непрерывной регистрации данных обеспечивает непрерывную запись интересующего параметра пробы. К интересующим параметрам относятся давление, температура пробы и получаемые во времени данные анализа пробы с применением излучения в ближнем/среднем диапазоне ИК-области спектра и в видимой области спектра, запись которых ведется непрерывно. Аналитический модуль 728 также включает в себя изгибный механический резонатор, описанный в патентной заявке США №10/144965, права на которую принадлежат обладателю прав на настоящее изобретение и которая в полном объеме включена в данное описание в качестве ссылки. Устройство непрерывной регистрации данных считывает показания датчиков давления и температуры, а также данные анализа пробы с применением излучения в ближнем/среднем диапазоне ИК-области спектра и в видимой области спектра с текущей частотой (1/5 или 1/10 мин) и сохраняет их в памяти. После подсоединения устройства непрерывной регистрации данных на резервуар устанавливают предохранительные крышки, и теперь резервуар готов к транспортировке в лабораторию для исследования PVT-свойств.

Для обеспечения сообщения между устройством непрерывной регистрации данных и пробой флюида в скважине устройство непрерывной регистрации данных можно подсоединять на поверхности перед спуском в скважину. В этой конфигурации давление, температура и результаты анализа пробы с применением излучения в ближнем/среднем диапазоне ИК-области спектра и в видимой области спектра могут записываться в скважине до отбора пробы, в процессе отбора, во время подъема пробы на поверхность и во время перевозки пробы в лабораторию, что обеспечивает непрерывную регистрацию на протяжении всего времени существования пробы.

В другом варианте предлагаемый в изобретении способ реализуется в виде набора выполняемых на компьютере команд, записанных на машиночитаемом носителе данных, который может быть представлен постоянным запоминающим устройством (ПЗУ), оперативным запоминающим устройством (ОЗУ), компакт-диском (CD-ROM), флэш-памятью и любым другим машиночитаемым носителем, известным или неизвестным в настоящее время, которые при выполнении на компьютере обеспечивают реализацию способа, предлагаемого в изобретении.

Осуществление изобретения было рассмотрено выше на примере его конкретных вариантов, однако специалистам должны быть очевидны возможности осуществления изобретения и в других, видоизмененных, вариантах. Предполагается, что любые такие изменения подпадают под патентные притязания, изложенные в прилагаемой формуле изобретения. Примеры наиболее важных признаков изобретения были представлены в довольно обобщенном виде, чтобы можно было оценить их вклад в уровень техники. Существуют, безусловно, и дополнительные особенности изобретения, раскрытые в прилагающейся формуле изобретения.

1. Устройство для контроля интересующего параметра пробы пластового флюида, содержащее

скважинную пробоотборную камеру для размещения пробы пластового флюида и

модуль контроля, сообщающийся посредством канала для флюида с частью пробы пластового флюида в скважинной пробоотборной камере и предназначенный для контроля интересующего параметра пробы пластового флюида.

2. Устройство по п.1, содержащее клапан, связанный с каналом для подачи части пробы пластового флюида в модуль контроля.

3. Устройство по п.1, содержащее вторичный клапан, связанный с каналом для выборочного удержания части пробы флюида в канале.

4. Устройство по п.3, в котором первичный и вторичный клапаны взаимодействуют для изолирования части пробы флюида в канале.

5. Устройство по п.1, содержащее датчик температуры для контроля температуры пробы флюида или датчик давления для контроля давления пробы флюида.

6. Устройство по п.1, содержащее регистратор для регистрации интересующего параметра пробы флюида.

7. Устройство по п.6, в котором регистрируется один из следующих параметров: изменение давления, температуры и излучения в ближнем/среднем диапазоне ИК-области спектра и в видимой области и в видимой области спектра.

8. Устройство по п.1, содержащее аналитический модуль для выполнения анализа пробы флюида с определением первого интересующего параметра пробы флюида.

9. Устройство по п.8, в котором аналитический модуль содержит систему оптического анализа.

10. Устройство по п.8, в котором аналитический модуль содержит изгибный механический резонатор.

11. Устройство по п.8, в котором аналитический модуль содержит нейронную сеть для оценки второго интересующего параметра пробы флюида на основании первого интересующего параметра пробы флюида.

12. Устройство по п.8, в котором аналитический модуль содержит хемометрическое уравнение для оценки второго интересующего параметра пробы флюида на основании первого интересующего параметра пробы флюида.

13. Устройство по п.1, содержащее считывающее устройство для отображения одного из интересующих параметров.

14. Устройство по п.13, в котором считывающее устройство выборочно соединено с модулем контроля.

15. Способ контроля интересующего параметра пробы пластового флюида, при осуществлении которого

отбирают в скважине пробу флюида в пробоотборную камеру, устанавливают сообщение между частью пробы флюида и модулем контроля посредством канала для флюида в непосредственном контакте с пробой, и

осуществляют контроль интересующего параметра пробы флюида, используя модуль контроля.

16. Способ по п.15, в котором отделяют часть пробы флюида от пробоотборной камеры посредством размещенного в канале клапана.

17. Способ по п.16, в котором удерживают часть пробы флюида в канале между первым и вторым клапанами.

18. Способ по п.15, в котором осуществляют контроль давления или температуры пробы флюида.

19. Способ по п.15, в котором осуществляют регистрацию интересующего параметра пробы флюида.

20. Способ по п.15, в котором осуществляют анализ пробы флюида с определением ее первого интересующего параметра.

21. Способ по п.20, в котором осуществляют оптический анализ пробы флюида.

22. Способ по п.20, в котором осуществляют анализ пробы флюида при помощи изгибного механического резонатора.

23. Способ по п.20, в котором на основании интересующего параметра пробы флюида при помощи нейронной сети оценивают второй интересующий параметр пробы флюида.

Приоритет по пунктам:

02.05.2003 по пп.1-23.



 

Похожие патенты:

Изобретение относится к нефтяной промышленности, в частности к технике, применяемой для исследования пластов при нефтедобыче. .

Изобретение относится к нефтяной и газовой промышленности, в частности к технике отбора проб жидкости и газа в скважинах. .

Изобретение относится к устройствам для отбора проб пластовых флюидов из газовых и нефтяных скважин на заданной глубине. .

Изобретение относится к нефтяной промышленности и может быть использовано в пробоотборниках для отбора проб нефти из скважины. .

Изобретение относится к горной промышленности и может быть использовано для отбора глубинных проб нефти в действующих и разведочных скважинах, в основном работающих фонтанным способом.

Изобретение относится к исследованиям глубинных проб флюидов и, в частности, к получению аликвотных глубинных микропроб пластовых флюидов для проведения ускоренного анализа на месте получения пробы.

Изобретение относится к определению различных скважинных характеристик в подземном пласте, через который проходит ствол скважины. .

Изобретение относится к способу и сенсору для мониторинга газа в окружающей среде скважины. .

Изобретение относится к устройству для определения наличия пластового газа в потоке бурового раствора, проходящего по скважине во время ее бурения. .

Изобретение относится к измерению и анализу буровых растворов, растворов для вскрытия продуктивного пласта, растворов для заканчивания скважин, производственных растворов и пластовых флюидов на буровой площадке или в удаленной лаборатории.

Изобретение относится к контролю качества при отборе проб пластовых флюидов

Изобретение относится к области транспортировки проб текучих сред и/или реологических измерений на поверхностях раздела

Изобретение относится к спектрометрии в условиях скважины и, в частности, к устройству и способу для определения оптимальной скорости откачки на основе соответствующего скважинным условиям давления начала конденсации или давления насыщения

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при изучении флюидодинамики газовой среды на месторождениях углеводородов и подземных хранилищах газа

Изобретение относится к нефтяной промышленности, в частности к технике, применяемой для исследования пластов при нефтедобыче

Изобретение относится к гидрогеологическим исследованиям скважин и предназначено для отбора глубинных проб жидкости в скважинах

Изобретение относится к нефтедобывающей промышленности и предназначено для оценки пласта, через который проходит ствол скважины

Изобретение относится к нефтедобывающей промышленности и предназначено для оценивания параметров подземного пласта, имеющего первичный флюид и загрязненный флюид
Наверх