Способ получения сульфоксидов каталитическим окислением тиоэфиров

Настоящее изобретение относится к способу получения сульфоксидов окислением тиоэфиров пероксидом водорода, в присутствии в качестве катализатора соли цинка, например Zn(NO3)2·6H2O, или координационного соединения цинка, например гомохирального микропористого координационного полимер состава: [Zn2BDC·(L-Lac)·DMF]·(DMF)x, где BDC - дианион терефталевой кислоты, L-Lac - дианион молочной кислоты, DMF - диметилформамид. Настоящий способ позволяет получить сульфоксиды при более высокой конверсии и селективности процесса. 2 з.п. ф-лы, 2 табл.

 

Изобретение относится к области органической химии, а именно к получению сульфоксидов, которые широко применяются в синтезе органических соединений, в том числе биологически активных соединений /Прилежаева Е.Н. Сульфоны и сульфоксиды в полном синтезе биологически активных природных соединений. // Успехи химии, 2000, т.69, с.403-446/.

Основным подходом к получению сульфоксидов является окисление сульфидов (тиоэфиров) в мягких условиях, обычно при низких температурах, строго дозируя используемый окислитель и подбирая оптимальный растворитель.

Используется Н2О2 в различных средах и с различными каталитическими добавками, органические пероксикислоты, гидропероксиды, различные типы галогенсодержащих окислителей, в том числе свободные галогены, азотная кислота и другие азотсодержащие окислители, свободный кислород и другие более сложные реагенты /Прилежаева Е.Н. Химия сульфоксидов и сульфонов // В: Получение и свойства органических соединений серы, Л.И. Беленький, ред., Москва, Химия, 1998/. Большинство процессов имеют ряд недостатков, таких как (1) дороговизна (и непригодность для промышленного применения), (2) недостаточная экологическая безопасность, (3) невысокая селективность: на практике зачастую сложно остановить окисление на первой стадии, и большинство каталитических способов окисления приводят к образованию примесей сульфона в продуктах реакции. Поэтому поиск новых высокоселективных каталитических систем на основе доступных, не загрязняющих окружающую среду металлов (желательно биоэлементов, таких как Zn, Fe) и дешевых нетоксичных окислителей (например, пероксида водорода) является важной и актуальной задачей.

В данной работе предлагается новый способ получения сульфоксидов, основанный на процессе селективного окисления сульфидов пероксидом водорода, катализируемом соединениями цинка.

Предложен способ окисления тиоэфиров в сульфоксиды пероксидом водорода, в котором в качестве катализатора используют соли цинка, например, Zn(NO3)2·6Н2О, или координационные соединения цинка, например гомохиральный микропористый координационный полимер состава: [Zn2BDC·(L-Lac)·DMF]·(DMF)x, где BDC - дианион терефталевой кислоты, Z-Lac - дианион молочной кислоты, DMF - диметилформамид.

Несмотря на значительное число способов получения сульфоксидов /Прилежаева Е.Н. Химия сульфоксидов и сульфонов // В: Получение и свойства органических соединений серы, Л.И. Беленький, ред., Москва, Химия, 1998/, в литературе до сих пор не было описано примеров окисления сульфидов (тиоэфиров) в сульфоксиды, катализируемых соединениями цинка. Наши исследования показали, что соли цинка способны катализировать селективное окисление тиоэфиров до сульфоксидов пероксидом водорода. Так, при использовании в качестве катализатора Zn(NO3)2·6Н2О окисление алкиларилсульфидов пероксидом водорода происходило с конверсией и селективностью до 100% (таблица 1). Это гомогенный процесс; для растворения Zn(NO3)2·6Н2О и пероксида водорода необходимо использовать полярные растворители. Количественное превращение может достигаться при использовании не более 10 моль.% катализатора; оптимальное соотношение окислитель: субстрат равняется двум.

Кроме того, показано, что микропористый координационный полимер [Zn2BDC·(L-Lac)·DMF]·(DMF)X (1·(DMF)X, x=0÷1) /Dybtsev D.N., Nuzhdin A.L., Chun H, Bryliakov K.P., Talsi E.P., Fedin V.P., Kim K. A Homochiral Metal-Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity // Angew. Chem. Int. Ed., 2006, v.45, p.916-920/ катализирует селективное гетерогенное окисление тиоэфиров до сульфоксидов дешевым и экологически безопасным окислителем - пероксидом водорода. Результаты гетерогенного окисления сульфидов, катализируемого [Zn2BDC·(L-Lac)·DMF]·(DMF)x (х=0÷1), представлены в таблице 2. В экспериментах по каталитическому окислению тиоэфиров, имеющих небольшие заместители (PhSMe, p-BrPhSMe) с 1·(DMF)x (х=1; ≈0.4) наблюдаются высокие конверсии и высокая селективность окисления после 16 ч каталитической реакции, тогда как тиоэфиры с объемными заместителями (эксперимент №3) окисляются с низкой конверсией. Размерная селективность в каталитических реакциях объясняется тем, что реакция главным образом происходит внутри микропор каркаса 1·(DMF)x. Поскольку PhCH2SPh в силу больших размеров не может проникать в поры 1·(DMF)x, его окисление может происходить только на поверхности полимера, что приводит к чрезвычайно низким величинам конверсии. Раствор, полученный перемешиванием 1·(DMF)0.4 в 2 мл CH2Cl2 в течение 12 ч с последующим отделением твердой фазы с помощью фильтрования и центрифугирования, не проявляет каталитической активности в окислении тиоэфиров. Таким образом, при перемешивании не происходит вымывания активных центров, что также является подтверждением гетерогенного характера каталитической реакции. Каждая формульная единица [Zn2] способна выполнять не менее 30 каталитических циклов. Полимер 1·(DMF)x, из которого практически полностью удален DMF (х=0), демонстрирует низкую конверсию в окислении сульфидов. Вероятно, это связано с частичным разрушением каркаса и схлопыванием пор при удалении значительного количества диметилформамида. Несмотря на то, что полимер 1·(DMF)x обладает свойством гомохиральности (т.к. при его синтезе была использована оптически чистая L-молочная кислота), в результате окисления получается рацемическая смесь сульфоксидов. В случае необходимости рацемическая смесь может быть разделена на чистые энантиомеры любым из известных способов (кристаллизацией, разделением через диастереомеры либо с помощью энантиоселективной хроматографии). Отметим, что пористый координационный полимер [Zn2BDC·(L-Lac)·DMF]·(DMF)x - первый пример представителя класса координационных полимеров, демонстрирующий каталитическую активность в реакциях сульфоксидирования.

Таким образом, установлено, что соединения цинка способны катализировать окисление тиоэфиров пероксидом водорода с конверсией и селективностью до 100%. В реакциях окисления каталитическую активность проявляют как соли, так и координационные соединения цинка.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Получение рацемических сульфоксидов окислением соответствующих тиоэфиров пероксидом водорода с Zn(NO3)2·6H2O в качестве катализатора

Сульфид (тиоэфир) (0.15 ммоль) растворяли в 1.5 мл полярного растворителя (CH3CN, МеОН либо Н2О), добавляли катализатор (10-20 мол.%) и Н2О2 (0.3 ммоль) и перемешивали в течение 3-24 ч при комнатной температуре. По окончании реакции удаляли растворитель. Продукты реакции выделяли с помощью колоночной хроматографии (SiO2, элюент: гексан/этилацетат) и анализировали с помощью спектроскопии 1H ЯМР в CCl4 или CDCl3.

В таблице 1 приведены более подробно условия получения рацемических сульфоксидов окислением соответствующих сульфидов пероксидом водорода с применением соли цинка Zn(NO3)2·6H2O в качестве катализатора.

Пример 2.

Получение рацемических сульфоксидов окислением соответствующих тиоэфиров (сульфидов) пероксидом водорода с [Zn2·BDC(L-Lac)·DMF]·(DMF)x в качестве катализатора.

Смесь сульфида (0.1 ммоль, 1 экв), 1·(DMF)x ([Zn2·BDC·(L-Lac)·DMF]) и окислителя H2O2 (в виде 90% или 30% водного раствора) либо аддукта Н2О2 с мочевиной H2O2·(NH2)2CO (UHP) растворяли в CH2Cl2 или CH3CN (либо их смеси различного состава). Смесь, общий объем которой был 2 мл, перемешивали 16 ч при комнатной температуре. Полимер отфильтровывали и сорбированный сульфоксид экстрагировали метанолом (3×3 мл). Экстракт и фильтрат комбинировали, удаляли растворитель и DMF в вакууме. Определяют оптический выход и соотношение продуктов реакции определяли с помощью спектроскопии 1Н ЯМР с Eu(hfc)3 в CCl4 или CDCl3.

В таблице 2 приведены более подробно условия получения рацемических сульфоксидов окислением соответствующих сульфидов пероксидом водорода с применением координационного соединения цинка [Zn2·BDC·(L-Lac)·DMF]·(DMF)x в качестве катализатора.

Таблица 1
Окисление сульфидов пероксидом водорода, катализируемое Zn(NO3)2·6Н2О
СульфидКоличество катализатора, мол. %Время реакции, чРастворитель Конверсия [%][a]Селективность [%][b]
1PhSMe203CH3CN97100
2PhSMe1016CH3CN10095
3PhSMe203H2O9395
4PhSMe1016Н2O10097
5PhSMe[c]103CH3CN71100
6p-MePhSMe1016CH3CN77100
7PhSCH2Ph1016CH3CN80100
8p-BrPhSMe203CH3CN10099
9p-BrPhSMe1024CH3CN100100
10PhSi/Pr203CH3CN100100
11PhSi/Pr203MeOH100100
122-naphthylSMe203CH3CN100100
13CH3S(CH2)4OH203CH3CN98100
14CH3S(CH2)4OH[c]203CH3CN100100

Условия реакции: сульфид (0.15 ммоль), растворитель (1.5 мл), окислитель 30% Н2О2 (0.3 ммоль), перемешивание при комнатной температуре.

[a] Конверсия = ([RSOR']+[RSO2R'])/([RSO2R']+[RSO2R']+[RSR']),

[b] Селективность = [RSOR']([RSOR']+[RSO2R'])

[c] В качестве окислителя используют 90% Н2О2 (2 экв.)

Таблица 2
Гетерогенное окисление тиоэфиров (сульфидов), катализируемое [Zn2BDC·(Z-Lac)·DMF]·(DMF)x(х=0÷1)(1·(DMF)x)
xСульфид (тиоэфир)Окислитель (экв.)Zn: сульфидРастворительКонверсия[%][а]Селективность [%][b]
10.4p-BrPhSMeUHP (2)1:1CH2Cl25883
20.4p-NO2PhSMeUHP (2)1:1CH2Cl2790
30.4PhCH2SPhUHP (2)1:1СН2Cl23-
40.4PhSMeUHP (2)1:1СН2Cl26492
50.4PhSMeH2O2 30%(3)1:1.5CH3CN92100
60.4PhSMeH2O2 90%(3)1:1.5СН2Cl2/СН3С10080
N(5:1)
70.4PhSMeH2O2 90%(3)1:1.5СН2Cl2/СН3С10087
N(10:1)
80.4p-BrPhSMeH2O2 90%(3)1:1.5СН2Cl2/СН3С85100
N(10:1)
90.4p-BrPhSMeH2O2 90%(3)1:25СН2Cl2/СН3С58100
N(10:1)
100.4PhSMeH2O2 30%(1.5)1:5CH3CN9498
110.4p-BrPhSMeH2O2 90%(3)1:1.5СН2Cl2/СН3С52100
N(5:1)
120.4p-BrPhSMeH2O2 30%(3)1:1.5CH3CN8100
130p-BrPhSMeUHP (2)1:1СН2Cl2283
140p-BrPhSMeH2O2 30%(10)1:1CH3CN7695
150p-BrPhSMeH2O2 90%(3)1:1.5СН2Cl2/СН3С12100
N(10:1)
161p-BrPhSMeH2O2 90%(3)1:1.5СН2Cl2/СН3С5999
N(10:1)

Условия реакции: сульфид (0.1 ммоль), растворитель (2 мл), перемешивание при комнатной температуре 16 ч.

[a] Конверсия = ([RSOR']+[RSO2R'])/([RSOR']+[RSO2R']+[RSR']).

[b] Селективность = [RSOR']/([RSOR']+[RSO2R']).

1. Способ получения сульфоксидов каталитическим окислением тиоэфиров в присутствии пероксида водорода, отличающийся тем, что в качестве катализатора используют соединения цинка, выбранные из группы, включающей Zn(NO3)2·6H2O и гомохиральный микропористый координационный полимер состава: [Zn2BDC·(L-Lac)·DMF]·(DMF)x, где BDC - дианион терефталевой кислоты, L-Lac - дианион молочной кислоты, DMF - диметилформамид.

2. Способ по п.1, отличающийся тем, что в качестве соединения цинка используют Zn(NO3)2·6H2O.

3. Способ по п.1, отличающийся тем, что в качестве соединения цинка используют координационные соединения цинка, например гомохиральный микропористый координационный полимер состава: [Zn2BDC·(L-Lac)·DMF]·(DMF)x, где BDC - дианион терефталевой кислоты, L-Lac - дианион молочной кислоты, DMF - диметилформамид.



 

Похожие патенты:

Изобретение относится к области органической химии, а именно к получению хиральных сульфоксидов, которые широко применяются в синтезе хиральных органических соединений, в том числе биологически активных соединений.

Изобретение относится к усовершенствованному способу получения ароматических сульфонов. .

Изобретение относится к новым производным бензола или пиридина формулы (I) где R обозначает Н, С1-С7алкил и галоген; R1 обозначает Н или галоген при условии, что в 4-м положении R1 не обозначает бром или иод; R2 обозначает Н или CF3; R3 обозначает Н или С1-С7алкил; R4 обозначает Н, галоген, С1-С7алкил и др.; R5 обозначает Н или С1-С7алкил; Х обозначает -C(O)N(R5)-, -N(R5)-C(O)- или -С(O)O-; Y обозначает -(СН2)n-, -О-, -S-, -SO2-, -C(O)- или N(R5’)-; R5’ обозначает (низш.)алкил; Z обозначает =N-, -CH= или -С(С1)=; n обозначает число от 0 до 4; и их фармацевтически приемлемым солям.
Изобретение относится к способу получения 4,4-дихлордифенилсульфона, который является мономером в производстве полиариленсульфонов - термостойких полимеров конструкционного и электроизоляционного назначения.

Изобретение относится к способу получения 4,4'-дихлордифенилсульфона, являющегося мономером в синтезе термостойких полиариленсульфоновых полимеров. .

Изобретение относится к ортозамещенным соединениям формулы I или их фармацевтически приемлемым солям, которые являются ингибиторами простагландин Н синтазы. .

Изобретение относится к органическим соединениям серы, а точнее к получению хлорированных ароматических сульфоксидов. .
Изобретение относится к области органических соединений серы, а точнее к получению хлорированных ароматических сульфоксидов. .
Изобретение относится к области получения галоген- и/или алкилзамещенных диарилсульфонов, которые находят применение в качестве мономеров для получения термостойких полимерных материалов, полупродуктов для синтеза красителей, дубильных веществ и фармацевтических материалов.

Изобретение относится к новым промежуточным продуктам и усовершенствованному способу получения соединения С: Предлагаемый в изобретении способ получения основан на использовании недорогих исходных материалов, позволяет получать промежуточные продукты с высоким выходом и высокой степенью чистоты без необходимости проводить операции по хроматографической очистке и может быть реализован в условиях крупномасштабного промышленного производства.

Изобретение относится к способу окисления сульфидов, содержащихся в нефти, и может быть использовано в нефтехимической и нефтеперерабатывающей промышленности. .

Изобретение относится к способу окисления сульфидов, содержащихся в дизельных фракциях нефти, водным раствором пероксида водорода в присутствии молибденсодержащего катализатора.

Изобретение относится к способам получения нефтяных сульфоксидов, которые находят применение в технологии обогащения редких и благородных металлов, для решения экологических проблем, лечения сельскохозяйственных животных и т.д.
Изобретение относится к способу получения смеси сульфоксидов окислением сульфидов дизельных фракций сернистой и высокосернистой нефти водными растворами гипохлорита натрия или кальция.
Изобретение относится к способу получения смеси сульфоксидов окислением сульфидов дизельных фракций сернистой и высокосернистой нефти. .

Изобретение относится к новым арил-S(O)n-замещенным карбоновые/гидроксамовые кислотам формулы I, где Y означает гидрокси, XONH-, где X означает Н, C1-C6 алкил; R1 означает Н, C1-C6 алкил; R2 означает Н, C1-C6 алкил, C3-C8 циклоалкил, C3-C8 циклоалкил - C2-C8 алкил, тетрагидропиранил, пиперидинил, -NR6R7 где R6 означает Н, C1-C6 алкил, арил; R7 означает Н, C1-C6 алкил, арил, арил - C1-C8 алкил, -SO2NR8R9, арилоксикарбонил, C1-C8 алкоксикарбонил, -C(O)-O-CH2Rd, где Rd означает фенил; или группа NR6R7 означает валинамидо; R8 и R9 независимо означают Н, C1-C6 алкил; или R1 и R2 вместе с атомом углерода, к которому они присоединены образуют C3-C8 циклоалкил или возможно замещенные низшим алкилом пиперидинил или тетрагидропиранил; R3 означает Н, C1-C6 алкил, C3-C8 циклоалкил, C3-C8 циклоалкил-C1-C8 алкил, арил, арил - C1-C8 алкил, пиперидинил, тетрагидропиранил; R4 означает Н, C1-C6 алкил, C3-C8 циклоалкил, C3-C8 циклоалкил-C1-C8 алкил; R2 и R3 вместе представляют C3-C8 циклоалкил, R3 и R4 вместе представляют C3-C8 циклоалкил; R5 означает арил, возможно замещенный.

Изобретение относится к способу получения сульфоксидов, которые могут найти применение в качестве экстрагентов редких и благородных металлов, флотореагентов в металлургии или в качестве биологически активных веществ, перспективных для использования в сельском хозяйстве.
Изобретение относится к способам получения сульфоксидов, которые могут быть использованы в качестве экстрагентов металлов, флотореагентов и биологически активных веществ.

Изобретение относится к способу модулирования CRTh2-рецепторной активности с использованием соединений формулы (I) или их фармацевтически приемлемых солей, где W представляет собой О, S(O)n (где n равен 0, 1 или 2), NR15, CR1OR 2 или CR1R2; X представляет собой водород, галоген или C1-6алкил, который может быть замещен одним или более чем одним атомом галогена; Y представляет собой водород, галоген; Z представляет собой фенил, пиридил, пиримидил или хинолил, возможно замещенный одним или более чем одним заместителем, независимо выбранным из галогена, CN, нитро, SO2R9, SO2NR10R 11, CONR10R11, NHSO2R или C1-3алкила, замещенного одним или более чем одним атомом галогена; R1 и R2 независимо представляют собой атом водород или C1-6алкильную группу; R 9 представляет собойC1-6алкил; R10 и R11 независимо представляют собой водород или C1-6алкил, R15 представляет собой атом водорода или C1-С6-алкил
Наверх