Способ морской геоэлектроразведки с фокусировкой электрического тока (варианты)

Изобретение относится к области геофизики, а именно к способам морской геоэлектроразведки с использованием регулируемых источников электромагнитного поля. Сущность: в трех вариантах способа возбуждают электромагнитное поле в толще исследуемой среды, посылая в нее прямоугольные импульсы тока с паузами между ними. Проводят в течение импульса тока геометрическое зондирование и в течение паузы - зондирование на переходных процессах. При этом измеряют мгновенные значения первых и вторых разностей электрических потенциалов на дне моря. В первом варианте способа прокладывают три параллельных профиля. Средний профиль является измерительным и проходит через зафиксированную на морском дне точку зондирования. Два других профиля предназначены для прохождения горизонтального дипольного источника в придонной зоне. Измеряют вторые осевые и ортогональные разности электрических потенциалов и осевую, ортогональную и одну любую из четырех возможных сегментарных между двумя ближайшими внешними измерительными электродами разностей электрических потенциалов. Обеспечивают условие равенства нулю результирующей разности электрических потенциалов: осевой, ортогональной и одной из любых четырех сегментарных для исключения горизонтальной компоненты плотности тока в точке зондирования. Из значений перечисленных разностей рассчитывают два множества нормированных интерпретируемых электрических параметров, которые не подвержены боковому влиянию трехмерных геологических неоднородностей, находящихся вне точки зондирования. С использованием полученных параметров решают обратную задачу на основе дифференциального уравнения математической физики для напряженности электрического поля дипольного источника в электрохимически поляризующейся проводящей среде. Строят временные разрезы по электропроводности среды, коэффициенту вызванной поляризации и постоянной времени спада разности потенциалов вызванной поляризации. Технический результат: полное исключение в точке зондирования горизонтальной составляющей плотности тока, что исключает влияние боковых неоднородностей. 3 н. и 1 з.п. ф-лы, 8 ил.

 

Текст описания приведен в факсимильном виде.

1. Способ морской геоэлектроразведки, при котором по оси профиля зондирования возбуждают электромагнитное поле в толще исследуемой среды, пропуская через нее периодические прямоугольные импульсы тока с паузами после каждого из них при помощи проходящего вдоль профиля горизонтального дипольного электрического источника, и в каждой точке зондирования на протяжении каждой паузы после выключения тока измеряют с постоянным интервалом времени Δt последовательность мгновенных значений первых и вторых осевых или ортогональных относительно оси профиля разностей электрических потенциалов переходных процессов, при этом обеспечивают условие равенства нулю результирующей ортогональной или осевой разностей электрических потенциалов; формируют интерпретируемые параметры и, используя их и дифференциальное уравнение математической физики для напряженности электрического поля дипольного источника в электрохимически поляризующейся проводящей среде

где
2 - оператор Лапласа,
E(iω) - напряженность электрического поля дипольного источника, выраженная в уравнении для случая гармонического изменения величины электрического поля по времени,
σ(iωσ0ητ) - частотно-зависимая электропроводность элементов среды,
σ0 - электропроводность элементов среды без учета влияния вызванной поляризации,
η - коэффициент их вызванной поляризации,
τ - постоянная времени спада разности потенциалов вызванной поляризации,
решают математическую обратную задачу, определяя присущие каждому элементу среды три электрофизических параметра: удельную электропроводность σ0, вызванную поляризацию η и постоянную времени спада разности потенциалов вызванной поляризации τ;
и строят три временных разреза по этим параметрам,
отличающийся тем, что прокладывают три параллельных профиля, средний из которых является измерительным и проходит через зафиксированную на морском дне точку зондирования, где размещают пять измерительных электродов: один в центре и равноудаленно от него четыре по обеим осям координат; в пределах каждого периода «импульс - пауза» проводят геометрическое зондирование при включенном токе и зондирование на переходных процессах на протяжении паузы после выключения тока, измеряя вторые разности электрических потенциалов: осевую и ортогональную и первые разности электрических потенциалов: осевую, ортогональную и одну любую из четырех возможных, сегментарную между двумя ближайшими внешними измерительными электродами, при этом измерения в каждой фиксированной на измерительном профиле точке зондирования осуществляют при прохождении горизонтального дипольного источника в придонной зоне по первому профилю, параллельному измерительному и сдвинутому относительно него в ортогональном направлении по оси у на расстояние (y=-b), посылая токовые импульсы в исследуемую среду при всех его положениях от точки с координатами [(x=-L), (y=-b)] до точки с координатами [(x=+L), (y=-b)], затем дипольный источник разворачивают и переводят на второй параллельный профиль, сдвинутый относительно измерительного в противоположную сторону по оси y на расстояние (y=+b), и продолжают измерение при его движении в обратном направлении от точки с координатами [(x=+L), (y=+b)] до точки с координатами [(x=-L), (y=+b)];
на основе измеренных разностей обеспечивают поддержание равенства нулю результирующих первых разностей электрических потенциалов между каждой парой внешних измерительных электродов и определяют два независимых от силы тока источника и горизонтальной компоненты плотности тока (jx=0 и jy=0) в точке зондирования интерпретируемых параметра: один Pxy(t0) на основе геометрического зондировании при всех положениях дипольного источника, вычисляемый по формуле

и другой Pxy(ti) на основе зондирования на переходных процессах при четырех, выбранных методом итераций, наиболее информативных разносах с координатами дипольного источника [(x=-а), (y=-b)], [(x=+a), (y=-b)], [(x=+а), (y=+b)] и [(x=-а), (y=+b)] из всех прозондированных, вычисляемый по формуле

где k1(t0), k2(t0), k3(t0), - коэффициенты фокусировки при геометрическом зондировании, обеспечивающие поддержание равенства нулю результирующих первых разностей электрических потенциалов в каждой точке зондирования в период импульса тока на всех геометрических разносах, определяемые из системы трех уравнений



k1(ti), k2(ti), k3(ti) - коэффициенты фокусировки при зондировании на переходных процессах, обеспечивающие поддержание равенства нулю результирующих первых разностей электрических потенциалов в каждой точке зондирования в паузе тока на всех временах переходных процессов, определяемые из системы трех уравнений



t0 - момент времени при пропускании токового импульса, когда электрическое поле переходных процессов не отличается от своего установившегося значения, соответствующего постоянному току;
ti - моменты времени, при которых измеряют сигналы переходных процессов через равные интервалы времени Δt на протяжении всей паузы после выключения тока;


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов и первой сегментарной, измеренные при времени t0 пропускания тока в дипольном источнике при его прохождении по первому параллельному относительно измерительного профилю с ординатой (y=-b) от его начала [(x=-L), (y=-b)] до точки с координатами [(х=0), (y=-b)];


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов и первой сегментарной, измеренные при времени t0 пропускания тока в дипольном источнике при его прохождении по первому параллельному относительно измерительного профилю с ординатой (y=-b) от точки с координатами [(х=0), (y=-b)] до конца этого профиля [(x=+L), (y=-b)];


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов и первой сегментарной, измеренные при времени t0 пропускания тока в дипольном источнике при его прохождении по второму параллельному относительно измерительного профилю с ординатой (y=+b) от точки с координатами [(x=+L), (y=+b)] до точки с координатами [(х=0), (y=+b)];


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов и первой сегментарной, измеренные при времени t0 пропускания тока в дипольном источнике при его прохождении по второму параллельному относительно измерительного профилю с ординатой (y=+b) от точки с координатами [(х=0), (y=+b)] до точки с координатами [(x=-L), (y=+b)];


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов переходных процессов и первой сегментарной, измеренные в точке зондирования на всем протяжении паузы тока через равные интервалы времени Δt при выбранном методом итераций расстоянии [(x=-а), (y=-b)] между дипольным источником и точкой зондирования до его подхода к этой точке;


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов переходных процессов и первой сегментарной, измеренные в точке зондирования на всем протяжении паузы тока через равные интервалы времени Δt при выбранном методом итераций расстоянии [(x=+а), (y=-b)] между дипольным источником и точкой зондирования после его отхода от этой точки;


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов переходных процессов и первой сегментарной, измеренные в точке зондирования на всем протяжении паузы тока через равные интервалы времени Δt при выбранном методом итераций расстоянии [(x=+а), (y=+b)] между дипольным источником и точкой зондирования до его подхода к этой точке;


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов переходных процессов и первой сегментарной, измеренные в точке зондирования на всем протяжении паузы тока через равные интервалы времени Δt при выбранном методом итераций расстоянии [(x=-a), (y=-b)] между дипольным источником и точкой зондирования после его отхода от этой точки.

2. Способ морской геоэлектроразведки, при котором по оси профиля зондирования возбуждают электромагнитное поле в толще исследуемой среды, пропуская через нее периодические прямоугольные импульсы тока с паузами после каждого из них при помощи проходящего вдоль профиля горизонтального дипольного электрического источника, и в каждой точке зондирования на протяжении каждой паузы после выключения тока измеряют с постоянным интервалом времени Δt последовательность мгновенных значений первых и вторых осевых или ортогональных относительно оси профиля разностей электрических потенциалов переходных процессов, при этом обеспечивают условие равенства нулю результирующей ортогональной или осевой разностей электрических потенциалов; формируют интерпретируемые параметры и, используя их и дифференциальное уравнение математической физики для напряженности электрического поля дипольного источника в электрохимически поляризующейся проводящей среде

где ∇2 - оператор Лапласа,
E(iω) - напряженность электрического поля дипольного источника, выраженная в уравнении для случая гармонического изменения величины электрического поля по времени,
σ(iωσ0ητ) - частотно-зависимая электропроводность элементов среды,
σ0 - электропроводность элементов среды без учета влияния вызванной поляризации,
η - коэффициент их вызванной поляризации,
τ - постоянная времени спада разности потенциалов вызванной поляризации,
решают математическую обратную задачу, определяя присущие каждому элементу среды три электрофизических параметра: удельную электропроводность σ0, вызванную поляризацию η и постоянную времени спада разности потенциалов вызванной поляризации τ;
и строят три временных разреза по этим параметрам,
отличающийся тем, что прокладывают три параллельных профиля, средний из которых является измерительным и проходит через зафиксированную на морском дне точку зондирования, где размещают пять измерительных электродов: один в центре и равноудаленно от него четыре по обеим осям координат; в пределах каждого периода «импульс - пауза» проводят геометрическое зондирование при включенном токе и зондирование на переходных процессах на протяжении паузы после выключения тока, измеряя вторые разности электрических потенциалов: осевую и ортогональную и первые разности электрических потенциалов: осевую, ортогональную и одну любую из четырех возможных сегментарную между двумя ближайшими внешними измерительными электродами, при этом измерения в каждой фиксированной на измерительном профиле точке зондирования осуществляют при прохождении горизонтального дипольного источника в придонной зоне по первому профилю, параллельному измерительному и сдвинутому относительно него в ортогональном направлении по оси у на расстояние (y=-b), посылая токовые импульсы в исследуемую среду при всех его положениях от точки с координатами [(x=-L), (y=-b)] до точки с координатами [(x=+L), (y=-b)], затем дипольный источник разворачивают и переводят на второй параллельный профиль, сдвинутый относительно измерительного в противоположную сторону по оси у на расстояние (y=+b), и продолжают измерение при его движении в обратном направлении от точки с координатами [(x=+L), (y=+b)] до точки с координатами [(x=-L), (y=+b)];
на основе измеренных разностей обеспечивают при геометрическом зондировании поддержание равенства нулю результирующих первых разностей электрических потенциалов: осевой, ортогональной и одной любой из четырех возможных сегментарной между двумя ближайшими внешними измерительными электродами и определяют независимый от силы тока источника и горизонтальной компоненты плотности тока (jx=0 и jy=0) в точке зондирования на основе геометрического зондировании при всех положениях дипольного источника интерпретируемый параметр

и независимый от силы тока дипольного источника и ортогональной горизонтальной составляющей плотности тока jy в точке зондирования на основе зондирования на переходных процессах при равенстве нулю результирующей первой ортогональной разности электрических потенциалов при выбранных методом итераций наиболее информативных разносах с координатами дипольного источника [(x=-a), (y=-b)] и [(x=+a), (y=+b)] из всех прозондированных другой интерпретируемый параметр

где k1(t0), k2(t0), k3(t0) - коэффициенты фокусировки при геометрическом зондировании, обеспечивающие поддержание равенства нулю всех трех результирующих первых разностей электрических потенциалов в каждой точке зондирования в период импульса тока на всех геометрических разносах, определяемые из системы трех уравнений



ky(ti) - коэффициент фокусировки при зондировании на переходных процессах, обеспечивающий равенство нулю результирующей первой ортогональной разности электрических потенциалов в каждой точке зондирования в паузе тока на всех временах переходных процессов, определяемый по формуле

t0 - момент времени при пропускании токового импульса, когда электрическое поле переходных процессов не отличается от своего установившегося значения, соответствующего постоянному току;
ti - моменты времени, при которых измеряют сигналы переходных процессов через равные интервалы времени Δt на протяжении всей паузы после выключения тока;


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов и первой сегментарной, измеренные при времени t0 пропускания тока в дипольном источнике при его прохождении по первому параллельному относительно измерительного профилю с ординатой y=-b от его начала [(x=-L), (y=-b)] до точки с координатами [(х=0), (y=-b)];


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов и первой сегментарной, измеренные при времени t0 пропускания тока в дипольном источнике при его прохождении по первому параллельному относительно измерительного профилю с ординатой (y=-b) от точки с координатами [(х=0), (y=-b)] до конца этого профиля [(x=+L), (y=-b)];


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов и первой сегментарной, измеренные при времени t0 пропускания тока в дипольном источнике при его прохождении по второму параллельному относительно измерительного профилю с ординатой (y=+b) от точки с координатами [(x=+L), (y=+b)] до точки с координатами [(х=0), (y=+b)];


- мгновенные значения первых и вторых осевых и ортогональных разностей электрических потенциалов и первой сегментарной, измеренные при времени t0 пропускания тока в дипольном источнике при его прохождении по второму параллельному относительно измерительного профилю с ординатой (y=+b) от точки с координатами [(х=0), (y=+b)] до точки с координатами [(x=-L), (y=+b)];
- мгновенные значения первой и второй ортогональных разностей электрических потенциалов переходных процессов, измеренные в точке зондирования на всем протяжении паузы тока через равные интервалы времени Δt при выбранном методом итераций расстоянии [(x=-а), (y=-b)] между дипольным источником и точкой зондирования до его подхода к этой точке;
- мгновенные значения первой и второй ортогональных разностей электрических потенциалов переходных процессов, измеренные в точке зондирования на всем протяжении паузы тока через равные интервалы времени Δt при выбранном методом итераций расстоянии [(x=+а), (y=+b)] между дипольным источником и точкой зондирования до его подхода к этой точке.

3. Способ морской геоэлектроразведки, при котором по оси профиля зондирования возбуждают электромагнитное поле в толще исследуемой среды, пропуская через нее периодические прямоугольные импульсы тока с паузами после каждого из них при помощи проходящего вдоль профиля горизонтального дипольного электрического источника, и в каждой точке зондирования на протяжении каждой паузы после выключения тока измеряют с постоянным интервалом времени Δt последовательность мгновенных значений первой и второй осевых разностей электрических потенциалов переходных процессов, при этом обеспечивают условие равенства нулю результирующей осевой разности электрических потенциалов; формируют интерпретируемые параметры и, используя их и дифференциальное уравнение математической физики для напряженности электрического поля дипольного источника в электрохимически поляризующейся проводящей среде

где ∇2 - оператор Лапласа,
E(iω) - напряженность электрического поля дипольного источника, выраженная в уравнении для случая гармонического изменения величины электрического поля по времени,
σ(iωσ0ητ) - частотно-зависимая электропроводность элементов среды,
σ0 - электропроводность элементов среды без учета влияния вызванной поляризации,
η - коэффициент их вызванной поляризации,
τ - постоянная времени спада разности потенциалов вызванной поляризации,
решают математическую обратную задачу, определяя присущие каждому элементу среды три электрофизических параметра: удельную электропроводность σ0, вызванную поляризацию η и постоянную времени спада разности потенциалов вызванной поляризации τ;
и строят три временных разреза по этим параметрам,
отличающийся тем, что прокладывают два параллельных профиля, один из которых является измерительным и проходит через зафиксированную на морском дне точку зондирования, где размещают три измерительных электрода: один в центре и равноудаленно от него два вдоль оси профиля, в пределах каждого периода «импульс - пауза» проводят геометрическое зондирование при включенном токе и зондирование на переходных процессах на протяжении паузы после выключения тока, при этом измерения в каждой фиксированной на измерительном профиле точке зондирования осуществляют при прохождении горизонтального дипольного источника в придонной зоне по другому профилю, параллельному измерительному и сдвинутому относительно него в ортогональном направлении по оси у на расстояние (y=-b), посылая токовые импульсы в исследуемую среду при всех его положениях от точки с координатами [(x=-L), (y=-b)] до точки с координатами [(x=+L), (y=-b)]; на основе измеренных разностей обеспечивают поддержание равенства нулю результирующей первой осевой разности электрических потенциалов и определяют два независимых от силы тока источника и осевой компоненты плотности тока в точке зондирования интерпретируемых параметра: один Px(t0) на основе геометрического зондирования при всех разносах зондирующей установки от [(x=-L), (y=-b)] до [(x=+L), (y=-b)], вычисляемый по формуле

и другой Px(ti) на основе зондирования на переходных процессах при выбранном методом итераций наиболее информативном разносе [(x=±а), (y=-b)] из всех прозондированных, вычисляемый по формуле

где kx(t0) - коэффициент фокусировки при геометрическом зондировании, обеспечивающий равенство нулю результирующей осевой разности электрических потенциалов в каждой точке зондирования в период импульса тока на всех геометрических разносах, определяемый по формуле

kx(ti) - коэффициент фокусировки при зондировании на переходных процессах, обеспечивающий равенство нулю результирующей осевой разности электрических потенциалов в каждой точке зондирования в паузе тока на всех временах переходных процессов, определяемый по формуле

t0 - момент времени при пропускании токового импульса, когда электрическое поле переходных процессов не отличается от своего установившегося значения, соответствующего постоянному току;
ti - моменты времени, при которых измеряют сигналы переходных процессов через равные интервалы времени Δt на протяжении всей паузы после выключения тока;
- мгновенные значения первой и второй осевых разностей электрических потенциалов, измеренные при времени t0 пропускания тока в дипольном источнике при его прохождении по параллельному относительно измерительного профилю с ординатой y=-b от его начала [(x=-L), (y=-b)] до точки с координатами [(х=0), (y=-b)];
- мгновенные значения первой и второй осевых разностей электрических потенциалов, измеренные при времени t0 пропускания тока в дипольном источнике при его прохождении по параллельному относительно измерительного профилю с ординатой (y=-b) от точки с координатами [(х=0), (y=-b)] до конца этого профиля [(x=+b), (y=-b)];
- мгновенные значения первой и второй осевых разностей электрических потенциалов переходных процессов, измеренные в точке зондирования на всем протяжении паузы тока через равные интервалы времени Δt при выбранном методом итераций расстоянии [(x=-а), (y=-b)] между дипольным источником и точкой зондирования до его подхода к этой точке;
- мгновенные значения первой и второй осевых разностей электрических потенциалов переходных процессов, измеренные в точке зондирования на всем протяжении паузы тока через равные интервалы времени Δt при выбранном методом итераций расстоянии [(x=+а), (y=-b)] между дипольным источником и точкой зондирования после его отхода от этой точки.

4. Способ морской геоэлектроразведки по пп.1-3, отличающийся тем, что расстояние L = 6 км и более, расстояние а - 1 км и более, а расстояние b = 200 м и более.



 

Похожие патенты:

Изобретение относится к электроразведке. .

Изобретение относится к геофизике, а именно к электроразведке с использованием пространственного дифференцирования поля становления на нескольких разносах. .

Изобретение относится к области геофизических исследований, а именно к способам морской геоэлектроразведки с использованием регулируемых искусственных источников электромагнитного поля.

Изобретение относится к области геофизических исследований и предназначено для поисков и оконтуривания нефтегазовых залежей. .

Изобретение относится к области геофизических исследований, а более конкретно - к способам морской геоэлектроразведки с использованием регулируемых искусственных источников электромагнитного поля.

Изобретение относится к области геофизических исследований и предназначено для поисков и оконтуривания нефтегазовых залежей. .

Изобретение относится к области геофизических исследований и предназначено для поисков и оконтуривания нефтегазовых залежей. .

Изобретение относится к области геофизических исследований и предназначено для поисков и оконтуривания нефтегазовых залежей. .

Изобретение относится к электроразведке малых глубин и может быть использовано при изучении геоэлектрической неоднородности верхней части разреза при инженерно-геологических изысканиях в сложных условиях заземлении (мерзлый грунт, сухие пески, твердые искусственные покрытия).

Изобретение относится к морской геоэлектроразведке с использованием контролируемых искусственных источников электромагнитного поля

Изобретение относится к области электроразведочных исследований

Изобретение относится к области геофизических исследований, а более конкретно к способам морской геоэлектроразведки с использованием контролируемых искусственных источников электромагнитного поля

Изобретение относится к электроразведке

Изобретение относится к геофизике

Изобретения относятся к области разведочной геофизики, в частности к комплексам оборудования для осуществления геоэлектроразведки методами вызванной поляризации и сопротивления, и предназначены для прогнозирования залежей углеводородов в транзитной зоне шельфа при глубинах моря от 0 до 10 м. Сущность: устройство содержит комплект донных станций с измерительными каналами и электроразведочные приемные линии с измерительными электродами. Электроды расположены на приемной линии таким образом, чтобы образовать для каждой станции один симметричный относительно станции разнос, равный длине приемной линии. Причем электроды для измерения соседними станциями расположены на косе напротив друг друга для измерения поля в одной и той же точке. Станции снабжены также симметричным относительно станции разносом, имеющий размер в 10 раз меньше длины генераторного диполя, но не менее 10 метров. Способ использует комплекс вышеописанных донных станций. При этом регистрируют для каждого положения генераторного диполя возникающие на парах приемных электродов сигналы во временной и частотной областях как во время импульсов тока, так и в паузе между ними. При анализе сигналов выделяют участки профиля, где сигналы электродинамического становления и становления вызванной поляризации имеют противоположные знаки, по изменениям которых вдоль профиля выявляют аномалии ВП. По данным сигналов во временной и частотной области для дистанционных и вертикальных зондирований строят разрез удельного сопротивления вдоль профиля. По корреляции аномалий вызванной поляризации и удельного сопротивления судят о наличии залежей углеводородов. Технический результат: повышение точности прогноза за счет обеспечения непрерывности измерений. 2 н. и 1 з.п. ф-лы, 7 ил.

Изобретение относится к измерительной технике и может быть использовано для поиска места прохождения и глубины залегания кабельных линий, трубопроводов, газо- и нефтепроводов, находящихся под землей. Технический результат: повышение точности и снижение трудоемкости измерений. Сущность: подключают источник переменного тока к коммуникации, генерируют переменный испытательный сигнал, определяют примерную трассу прокладки коммуникации и место положения начальной точки измерения. Далее устанавливают блок датчиков, содержащий, по крайней мере, один датчик электромагнитного поля в первую точку измерения, при помощи которого измеряют величину напряженности электромагнитного поля в первой точке на каждом датчике в блоке. После чего при помощи коммутатора фиксируют величину напряженности электромагнитного поля и высоту над уровнем земли в первой точке измерения на каждом датчике в блоке. Перемещают блок датчиков в произвольную точку измерения на известные расстояния, по крайней мере, по одной координате. Измеряют в данной точке величину напряженности электромагнитного поля на каждом датчике. При помощи коммутатора в данной точке фиксируют величину напряженности электромагнитного поля на каждом датчике и изменение координат, на которое перемещают блок датчиков электромагнитного поля от первой точки измерения. Повторяют операцию необходимое количество раз в зависимости от заданной точности измерения, характеризующейся количеством коммуникаций и датчиков электромагнитного поля в блоке. Определяют глубину залегания и расстояние, по крайней мере, до одной коммуникации на основе решения нелинейных уравнений в соответствии выражениями для напряженности электромагнитного поля. 2 н. и 19 з.п. ф-лы, 8 ил.

Изобретение относится к морской электроразведке и может быть использовано для изучения строения осадочного чехла и структуры верхней части земной коры с целью прогноза месторождений полезных ископаемых акваторий арктических морей, покрытых льдом. Сущность заявленного технического решения заключается в том, что на дрейфующей льдине располагают регистрирующую станцию данных МТЗ, при этом осуществляют измерения магнитотеллурического поля на каждой конкретной частоте, привязанные к соответствующей точке на профиле, координаты которой изменяются за счет дрейфа льдины. Указанные координаты фиксируют при каждом измерении, осуществляют регистрацию данных МТЗ, АМТЗ и откликов на резкие изменения магнитотеллурического поля, по полученной совокупности данных восстанавливают распределение электрической проводимости геологической среды и делают прогноз о наличии или отсутствии искомых объектов, связанных с полезными ископаемыми в зоне проведения исследований. Технический результат изобретения - создание способа морской геофизической разведки путем измерения магнитотеллурического поля при работах в полярных областях на поверхности дрейфующего льда. Техническое решение согласно изобретению обеспечивает получение достоверной геофизической информации о структуре под морским дном с обеспечением глубинности исследований до 10000 м. 2 з.п. ф-лы, 8 ил.
Наверх