Способ получения авиационного керосина

Изобретение относится к способам получения авиационного керосина и может быть использовано в нефтеперерабатывающей промышленности. Способ осуществляют путем гидроочистки керосиновых фракций при повышенных температуре и давлении в присутствии катализатора. Изобретение касается способа, где предварительно сырье пропускают через «фильтрующий» слой инертного материала при соотношении инертного материала и катализатора от 2-98 об.% до 25-75 об.% и полученный гидрогенизат смешивают с исходным сырьем в соотношении от 60 - 40 мас.% до 95 - 5 мас.%. Способ позволяет получить в ходе процесса гидроочистки гидрогенизат, характеризующийся практически полным отсутствием меркаптанов (~0,001 мас.%) и минимальным содержанием других сернистых соединений. 2 з.п. ф-лы.

 

Изобретение относится к способам получения авиационного керосина и может быть использовано в нефтеперерабатывающей промышленности.

Известен способ гидрогенизационной демеркаптанизации керосиновых фракций путем раздельного нагрева исходного сырья и водорода (сырье нагревают до 300-350°С, водород до 450-550°С) с последующим контактированием реакционной смеси с катализатором. Процесс гидрогенизационного облагораживания проводят при давлении 1-5 МПа и соотношении водород/сырье, равном 200-1000 нм33 (Ав. св. СССР №1664814, 1991).

К числу недостатков способа следует отнести сложную технологическую схему, требующую использования двух раздельных систем нагрева реагирующих сред, что существенно удорожает реализацию данного способа.

Также известен способ демеркаптанизации керосиновых фракций, который заключается в том, что керосиновую фракцию смешивают с углеводородным газом, содержащим 4-20 мас.% водорода в соотношении 5:50 нм33 сырья, нагревают до температуры 150-250°С и при давлении 0,1-0,5 МПа контактируют с катализатором, содержащим оксиды металлов 6 и 8 групп Периодической системы элементов. До подачи сырья катализатор предварительно обрабатывают в течение 12-48 часов раствором, содержащим 0,5-1,0 мас.% полисульфидов в керосиновой фракции, при температуре 150-250°С, давлении 0,1-0,3 МПа и подаче углеводородного газа (с содержанием водорода 4-20 мас.%) не менее 10 нм33 керосиновой фракции (Патент РФ №2179573, 2002 г.).

Однако способ обладает рядом недостатков, наиболее важным из которых является невозможность очистки керосиновых дистиллатов от основной массы сернистых соединений (а только лишь от меркаптанов).

Известен способ гидрогенизационного облагораживания углеводородных дистиллатов, в частности дизельных дистиллатов. Согласно известному способу дизельные дистиллаты пропускают через «фильтрующий» слой, представляющий собой слой керамических шаров, занимающий 0,2-5% реакционного объема. Затем сырье подвергают гидроочистке в присутствии катализатора, представляющего собой слой контакта, содержащего 2-10 мас.% оксида молибдена на оксиде алюминия и занимающего 0,5-10% реакционного объема, с последующим проведением гидрирования в присутствии алюмо-никель-молибденового и/или алюмо-кобальт-молибденового катализатора.

Процесс гидрогенизационного облагораживания углеводородных дистиллатов проводят при давлении 4-10 МПа, температуре 340-400°С, объемной скорости подачи сырья 0,5-3,0 час-1, соотношении водородсодержащий газ/сырье 400-1200 об./об. (Патент РФ №2293757, 2007 г.).

К недостаткам известного способа относятся невозможность использования его для получения авиационных керосинов, сложная многостадийная схема обработки исходного сырья, жесткие условия проведения процесса гидроочистки.

Наиболее близким к заявляемому является способ получения авиационного керосина путем раздельной гидроочистки керосиновой фракции, выкипающей в интервале температур 120(140)-225(245)°С, и дизельной фракции, выкипающей в интервале температур 150(220)-340(370)°С. Гидроочищенную дизельную фракцию подвергают ректификации с выделением из нее фракции 50(100)-150(280)°С, которую смешивают с сырьем гидроочистки керосиновой фракции в массовом соотношении от 1-99% до 30-70%.

Процесс гидроочистки керосиновой фракции проводят при температуре 240-330°С, давлении - 2,5-3,5 МПа, объемной скорости подачи сырья 5-15 час-1, соотношении водородсодержащий газ/сырье 150-400 нм33 (Патент РФ №2074233, 27.02.1997 г.).

Способ позволяет увеличить потенциал выходов авиационного керосина за счет вовлечения в него легких фракций дизельного топлива, однако обладает рядом недостатков. К наиболее существенным недостаткам следует отнести использование двух автономных систем гидроочистки, что существенно усложняет и удорожает процесс производства топлива. Другим недостатком этого способа является увеличение выхода авиационного керосина за счет извлечения из гидроочищенного дизельного дистиллата легких фракций, что является экономически невыгодным, так как приводит к утяжелению дизельного топлива по фракционному составу и температуре застывания, и требует вовлечения в это дизельное топливо легких фракций со стороны.

Задачей предлагаемого изобретения является разработка способа получения авиационного керосина, характеризующегося минимальным количеством сернистых соединений (в том числе меркаптановой серы менее 0,003 мас.%), соответствующего современным требованиям к топливам марок РТ и ТС-1, при использовании недорогих и доступных материалов.

Поставленная задача решается предлагаемым способом получения авиационного керосина путем гидроочистки керосиновых фракций при повышенных температуре и давлении в присутствии катализатора. Способ отличается тем, что предварительно сырье пропускают через «фильтрующий» слой инертного материала при соотношении инертного материала и катализатора от 2-98 об.% до 25-75 об.% и полученный гидрогенизат смешивают с исходным сырьем в соотношении от 60 - 40 мас.% до 95 - 5 мас.%.

Причем процесс гидроочистки осуществляют в присутствии алюмо-никель-молибденового (АНМ) или алюмо-кобальт-молибденового (АКМ) катализатора при давлении 1,0-4,5 МПа, температуре 200-350°С, объемной скорости подачи сырья 1,0-10,0 час-1, соотношении водородсодержащий газ/сырье 20-400 н.об./об.

Особенностью предлагаемого способа является использование последовательной загрузки инертного материала («фильтрующий» слой) и катализатора гидроочистки в соотношении от 2-98 об.% до 25-75 об.%, а также последующее смешение продукта, полученного путем гидроочистки с исходным сырьем в соотношении от 60 - 40 мас.% до 95 - 5 мас.%.

Использование «фильтрующего» слоя обеспечивает предварительное распределение сырья, его полное смешение с водородсодержащим газом, а также удаление коксообразующих соединений, части сернистых соединений, механических примесей. В качестве «фильтрующего» слоя используют доступный и дешевый материал: гранулированный оксид алюминия, керамические шары и т.п.

Катализаторы (АНМ и АКМ) представляют собой выпускаемые в промышленности относительно недорогие контакты, содержащие в своем составе умеренное количество никеля (кобальта) и молибдена.

Способ осуществляют следующим образом: исходное сырье - керосиновый дистиллат после нагрева и смешения с циркулирующим (или пропускаемым «на проток») водородсодержащим газом поступает в реактор, где газосырьевая смесь предварительно проходит «фильтрующий» слой, занимающий 2-25% реакционного объема, а затем основной слой катализатора гидроочистки, занимающий 98-75% реакционного объема. Это позволяет равномерно распределить газосырьевую смесь по всему объему катализатора, а также осуществить предварительную очистку сырья от нежелательных примесей.

В ходе процесса гидроочистки получают гидрогенизат, характеризующийся практическим отсутствием меркаптанов (~0,001 мас.%) и минимальным содержанием других сернистых соединений. Указанное позволяет осуществить частичное смешение данного гидрогенизата с исходным сырьем, обеспечивая получение топлива РТ (содержание общей серы - менее 0,1 мас.%, меркаптановой серы - менее 0,003 мас.%) или топлива ТС-1 (содержание общей серы - менее 0,25 мас.%, меркаптановой серы - менее 0,003 мас.%). При смешении используют гидроочищенный компонент в количестве 60-95 мас.% и исходный керосин в количестве 40-5 мас.%. Вовлечение в товарную композицию определенной части исходного сырья позволяет уменьшить загрузку сырьем каталитической системы и в то же время обеспечивает строгое регулирование качества выпускаемой товарной продукции.

Ниже приведены конкретные примеры осуществления заявляемого способа.

Пример 1.

Гидроочистке подвергают керосиновый дистиллат западносибирской нефти фракция 135-240°С (содержание общей серы - 0,2 мас.%, содержание меркаптановой серы - 0,005 мас.%).

После смешения с водородсодержащим газом в соотношении 20 н.об./об. газосырьевую смесь нагревают до температуры 200°С и при давлении 1,0 МПа подают на «фильтрующий» слой (гранулированный оксид алюминия), занимающий 2 об.% реакционного объема, а затем - на основной катализатор процесса (АНМ), где при давлении 1,0 МПа, температуре 200°С, объемной скорости подачи сырья - 5 час-1 осуществляют реакции сероочистки сырья. Полученный гидрогенизат, содержащий 0,05 мас.% общей серы и 0,002 мас.% меркаптановой серы, смешивают с исходной керосиновой фракцией в соотношении 80-20 мас.%, получая при этом дистиллат авиационного керосина марки РТ, содержащий менее 0,1 мас.% общей серы и менее 0,003 мас.% меркаптановой серы.

Пример 2.

Гидроочистке подвергают керосиновый дистиллат восточной высокосернистой нефти - фракция 130-245°С (содержание общей серы -0,4 мас.%, содержание меркаптановой серы - 0,01 мас.%)

После смешения с водородсодержащим газом в соотношении 400 н.об./об. газосырьевую смесь нагревают до температуры 350°С и при давлении 4,5 МПа подают на «фильтрующий» слой (керамические шары), занимающий 25 об.% реакционного объема, а затем на основной катализатор процесса (АКМ), где при давлении 4,5 МПа, температуре 350°С, объемной скорости подачи сырья - 10 час-1 осуществляют реакции сероочистки сырья. Полученный гидрогенизат, содержащий 0,04 мас.% общей серы и 0,001 мас.% меркаптановой серы, смешивают с исходной керосиновой фракцией в соотношении 95-5 мас.%, получая при этом авиационный керосин марки ТС-1, содержащий менее 0,25% мас. общей серы и менее 0,003 мас.% меркаптановой серы.

Пример 3.

Гидроочистке подвергают керосиновый дистиллат сернистой нефти - фракция 135-240°С (содержание общей серы - 0,3 мас.%, содержание меркаптановой серы - 0,007 мас.%).

После смешения с водородсодержащим газом в соотношении 100 н.об./об. газосырьевую смесь нагревают до температуры 250°С и при давлении 2,0 МПа подают на «фильтрующий» слой (гранулированный оксид алюминия), занимающий 10 об.% реакционного объема, а затем на основной катализатор процесса (АНМ), где при давлении 2,0 МПа, объемной скорости подачи сырья 1,0 час-1 осуществляют реакции сероочистки сырья. Полученный гидрогенизат, содержащий менее 0,03 мас.% общей серы и 0,001 мас.% меркаптановой серы, смешивают с исходной керосиновой фракцией в соотношении 60-40%, получая при этом авиационный керосин марки РТ, содержащий менее 0,1 мас.% серы и менее 0,003 мас.% меркаптановой серы.

1. Способ получения авиационного керосина путем гидроочистки керосиновых фракций при повышенных температуре и давлении в присутствии катализатора, отличающийся тем, что предварительно сырье пропускают через «фильтрующий» слой инертного материала при соотношении инертного материала и катализатора от 2-98 до 25-75 об.%, и полученный гидрогенизат смешивают с исходным сырьем в соотношении от 60-40 до 95-5 мас.%.

2. Способ по п.1 отличающийся тем, что процесс гидроочистки осуществляют в присутствии алюмо-никель-молибденового или алюмо-кобальт-молибденового катализатора при давлении 1,0-4,5 МПа, температуре 200-350°С, объемной скорости подачи сырья 1,0-10,0 ч-1, соотношении водородсодержащий газ/сырье 20-400 н.об./об.

3. Способ по п.1, отличающийся тем, что в качестве «фильтрующего» слоя инертного материала используют гранулированный оксид алюминия или керамические шары.



 

Похожие патенты:

Изобретение относится к способу улучшения температуры потери подвижности углеводородного сырья, полученного в процессе Фишера-Тропша, в частности для превращения с хорошим выходом сырья, имеющего повышенные температуры потери подвижности, в, по крайней мере, одну фракцию, имеющую низкую температуру потери подвижности и высокий индекс вязкости для базовых масел, путем пропускания через катализатор каталитической депарафинизации, содержащий, по крайней мере, один цеолит (молекулярное сито), выбранный из группы, образованной цеолитами структурного типа TON (Theta-1, ZSM-22, JSI-1, NU-10 и KZ-2), по крайней мере, один цеолит ZBM-30, синтезированный предпочтительно в присутствии особого структурирующего агента, такого как триэтилентетрамин, по крайней мере, одну неорганическую пористую матрицу, по крайней мере, один гидрирующий-дегидрирующий элемент, предпочтительно выбранный из элементов группы VIB и группы VIII Периодической системы элементов.

Изобретение относится к способу получения базового масла, характеризующегося индексом вязкости в диапазоне от 80 до 140, из исходного сырья в виде вакуумного дистиллята либо в виде деасфальтированного масла в результате введения исходного сырья в присутствии водорода в контакт с катализатором, содержащим металл группы VIB и неблагородный металл группы VIII на аморфном носителе, с последующей стадией депарафинизации.

Изобретение относится к способу гидрирования сырья среднего дистиллята, такого как дизельное топливо, чтобы получить дизельный продукт улучшенного качества. .
Изобретение относится к способам получения сверхмалосернистого дизельного топлива и может найти применение в нефтегазоперерабатывающей промышленности. .
Изобретение относится к способам облагораживания нефтяных дистиллатов, в частности дизельных дистиллатов, и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к нефтепереработке и может быть использовано для получения нефтяного растворителя из сернистых нефтей с низким содержанием ароматических углеводородов.
Изобретение относится к способам гидрогенизационной переработки нефтяного сырья в присутствии каталитической системы, водорода и может быть использовано в нефтеперерабатывающей промышленности

Изобретение относится к нефтепереработке, в частности к способам облагораживания бензиновых фракций

Изобретение относится к ZSM-48 высокой активности

Изобретение относится к процессам гидрообработки
Изобретение относится к нефтегазоперерабатывающей промышленности

Изобретение относится к способу каталитической гидроочистки углеводородного сырья, содержащего соединения кремния, включающему стадии контактирования углеводородного сырья в присутствии водорода с первым катализатором гидроочистки, расположенным в, по меньшей мере, двух последовательно связанных реакторах, при температуре, достигающей на выходе 410°C, для уменьшения содержания соединений кремния в углеводородном сырье; охлаждения обработанного таким образом сырья до температуры интервала от 280°С до 350°C; и контактирования охлажденного углеводородного сырья, выходящего из вышерасположенных по потоку реакторов для удаления соединений кремния, со вторым катализатором гидроочистки, по меньшей мере, одного нижерасположенного по потоку реактора для гидроочистки, при условиях эффективных для уменьшения концентрации соединения серы и соединения азота
Изобретение относится к катализаторам гидрооблагораживания дизельных дистиллятов, способу получения катализатора и способу гидрооблагораживания дизельных дистиллятов с целью получения экологически чистых дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности
Изобретение относится к способу улавливания мышьяка и обессеривания углеводородной фракции, содержащей олефины, серу и мышьяк, в неподвижном слое, где способ включает стадию а) контактирования в присутствии водорода улавливающей массы с вышеупомянутой углеводородной фракцией, причем вышеупомянутая улавливающая масса содержит: молибден, в сульфированной форме, и никель, в сульфированной форме; по меньшей мере, один пористый носитель, выбранный из группы, включающей оксиды алюминия, диоксиды кремния, смешанные оксиды кремния и алюминия, оксиды титана, оксиды магния, при этом содержание никеля, выраженное в % оксида никеля на улавливающую массу перед сульфированием, находится в интервале от 10 до 28 мас.%, содержание молибдена, выраженное в % оксида молибдена на улавливающую массу перед сульфированием, находится в интервале от 0,3 до 2,1 мас.%, и стадию b), на которой эфлюент стадии а) приводят в контакт с селективным катализатором гидрообессеривания

Изобретение относится к способу гидродесульфуризации (10) потоков углеводородов
Наверх