Способ определения количественного содержания компонентов в смеси

Изобретение относится к методам исследования количественно-качественного состава различных смесей. В способе возбуждают исследуемую смесь лазерным излучением, после чего регистрируют спектр ее комбинационного рассеяния. При установлении количественного содержания компонентов выбирают базовое значение Ij интенсивности полосы комбинационного рассеяния, соответствующей j-му компоненту смеси, где j=1…N, и N - общее число компонентов смеси, после чего определяют отношение интенсивностей полос комбинационного рассеяния каждого из исследуемых компонентов смеси к указанному базовому значению Ik/Ij, где k=1…N, k≠j. После этого вычисляют отношение концентрации каждого компонента к концентрации базового j-го компонента, а затем вычисляют парциальную концентрацию рn каждого компонента. Технический результат: обеспечивается определение парциальных концентраций компонентов смесей с заданной степенью точности с возможностью контроля образцов смеси непосредственно в емкостях, расположенных на произвольном расстоянии от измерительной аппаратуры как в зоне прямой видимости, так и вне ее, при использовании несложного оборудования. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к методам исследования количественно-качественного состава различных смесей, в частности спиртосодержащих растворов, и может применяться, например, в пищевой промышленности, в частности, для контроля качества алкогольных напитков и этилового спирта как сырья для их изготовления.

Из уровня техники известен способ измерения концентрации спирта в растворе путем регистрации и измерения поглощения исследуемым раствором излучения на определенных длинах волн (см. RU 2207564, МПК G01N 33/14, опубл. 27.06.2003). Основными недостатками данного метода являются большая чувствительность метода к наличию в растворе сахара, а также ограничение точности определения спирта чувствительностью регистрирующей аппаратуры, а именно соотношением сигнал/шум.

Известен также способ определения количественного содержания компонентов в смеси, выбранный в качестве наиболее близкого аналога, в котором возбуждают исследуемый раствор лазерным излучением известной и определенной мощности на заданной длине волны (преимущественно в инфракрасном диапазоне), после чего определяют концентрацию каждого компонента по интенсивности линии комбинационного рассеяния (КР) данного компонента (см. US 5481113, МПК G01N 21/47, опубл. 02.01.1996). Основными недостатками данного метода являются необходимость обеспечения высокой стабильности мощности возбуждающего излучения, ограничение диапазона используемых длин волн, а также необходимость обязательного проведения предварительных калибровочных измерений для построения кривых зависимости интенсивности полосы КР от концентрации данного компонента, причем в такой же геометрии возбуждения и регистрации, в какой проводятся измерения для исследуемого (контролируемого) раствора.

Техническим результатом настоящего изобретения является определение состава смеси путем измерения парциальных концентраций ее компонентов с обеспечением этих измерений непосредственно в емкостях (без их открытия и отбора проб) с возможностью выбора длины волны возбуждения без жестких ограничений по мощности возбуждающего лазерного излучения при расположении емкостей на произвольном расстоянии от измерительной аппаратуры как в зоне прямой видимости, так и вне ее, с получением конечного результата в режиме реального времени, определение парциальных концентраций компонентов с заданной точностью без обязательного проведения предварительных калибровочных измерений, а также измерение парциальных концентраций компонентов, например, в водно-спиртовых растворах - концентрации этилового спирта в готовых винно-водочных изделиях, т.е. крепости, примесей других спиртов (метилового и др.) в готовой продукции и сырье, остаточной воды в этиловом спирте как сырье для винно-водочных изделий.

Указанная цель достигается в способе определения количественного содержания компонентов в смеси, в котором возбуждают исследуемую смесь лазерным излучением, регистрируют спектр ее комбинационного рассеяния, после чего устанавливают количественное содержание компонентов в смеси на основе интенсивностей полос комбинационного рассеяния этих компонентов, согласно изобретению при установлении количественного содержания компонентов выбирают базовое значение Ij интенсивности полосы комбинационного рассеяния, соответствующей j-му компоненту смеси, где j=1…N, и N - общее число компонентов смеси, после чего определяют отношение интенсивностей полос комбинационного рассеяния каждого из исследуемых компонентов смеси к указанному базовому значению Ik/Ij, где к=1…N, k≠j, вычисляют отношение концентрации С* каждого компонента к концентрации указанного базового j-го компонента Cj

где σkj - отношение сечений полос комбинационного рассеяния k-го и j-го компонентов; µлj - отношение молекулярных масс этих компонентов, после чего вычисляют парциальную концентрацию рn каждого компонента из выражения

где n=1…N.

В качестве базового значения интенсивности может выбираться зарегистрированное значение интенсивности полосы комбинационного рассеяния доминирующего компонента, в частности интенсивность полосы комбинационного рассеяния воды или этанола.

Основным отличием заявляемого способа от известных из уровня техники аналогов является то, что для определения количественного состава компонентов смеси устанавливают парциальную концентрацию каждого компонента на основе отношения интенсивности полосы комбинационного рассеяния соответствующего компонента к базовой (реперной) интенсивности. Вследствие того, что анализируются не сами интенсивности, а их отношения, в заявленном изобретении, по существу, снимаются известные из уровня техники жесткие ограничения по мощности и диапазону длин волн возбуждающего лазерного излучения, что существенно повышает технологичность способа и расширяет область его применения. Кроме того, за счет линейной зависимости интенсивности полос комбинационного рассеяния веществ от мощности возбуждающего излучения в заявленном способе также обеспечивается возможность варьирования точности определения количественного содержания компонентов в зависимости от конкретной решаемой задачи путем регулирования (увеличения или уменьшения) мощности возбуждающего лазерного излучения. Более того, близкая к сфере индикатриса КР позволяет регистрировать вторичное излучение (КР) под любым углом к направлению распространения возбуждающего лазерного луча, в частности под углом 180°, т.е. в направлении назад. Все вышесказанное в свою очередь позволяет использовать заявленный способ для экспресс-оценки качественно-количественного состава смеси (в частности, сырья для изготовления спиртных напитков или самих спиртных напитков), находящейся даже внутри закрытой емкости (в частности, для спиртных напитков - в закупоренной таре), обеспечивая определение количественного состава с достаточной степенью точности с использованием несложного оборудования.

Изобретение поясняется далее более подробно на конкретном, не ограничивающем объем притязаний примере со ссылкой на чертеж, на котором приведена схема установки для осуществления заявленного способа.

Устройство для осуществления способа включает в себя источник лазерного излучения 1, в качестве которого может использоваться, например, диодный лазер с длиной волны, допускающей проникновение возбуждающего излучения сквозь стенки стандартного сосуда (стеклянного или пластикового), содержащего исследуемую смесь (раствор), в частности с длиной волны, выбираемой предпочтительно, но не обязательно, из диапазона 400…550 нм.

Далее изображенное на чертеже устройство для осуществления способа может содержать также средство доставки возбуждающего излучения к образцу 2 (например, поворотные зеркала m1 и m2 для перенаправления выходящего из источника 1 излучения в приемопередающий оптоволоконный кабель 2а - в случае контактного зондирования), средство приема вторичного излучения 3 (например, линза 3а, фокусирующая вторичное излучение на входную щель полихроматора 3б или линзовый телескоп в случае неконтактного дистанционного зондирования, или приемопередающий оптоволоконный кабель 2б - в случае контактного зондирования), связанный со средством 3 приема анализатор спектра 4 (например, полихроматор с CCD линейкой или несколькими фотодиодами, настроенными на определенные длины волн, соответствующие длинам волн КР измеряемых компонентов жидкости), оптоэлектронный преобразователь (например, CCD линейка или фотодиод, настроенный на определенные длины волн) 5 и вычислительное устройство 6 (ЭВМ).

Для осуществления способа с использованием изображенного на чертеже устройства источник 1 возбуждающего излучения и приемник (анализатор 4, преобразователь 5 и вычислительное устройство 6) подключают к электропитанию. Излучение через средство 2 доставки попадает в тару (7а - при неконтактном зондировании или 7б - при контактном зондировании), где возбуждает вторичное излучение (излучение КР) от компонентов смеси (раствора). Далее вторичное излучение через средство приема 3 (линзу 3а и щель 3б или через оптоволоконный кабель 2б) попадает на анализатор спектра 4.

При этом в рамках заявленного способа возможны следующие частные случаи осуществления исследования смеси:

(а) неконтактное дистанционное зондирование объема, расположенного в зоне прямой видимости; в этом случае лазерный луч направляется в тару с образцом 7а (причем необходимость в поворотных зеркалах m1 и m2 в этом случае фактически отпадает), а излучение КР приемной оптикой (в частности, линзой 3а) собирается и фокусируется на входную щель 3б анализатора спектра 4 (полихроматора).

(б) контактное дистанционное зондирование; в этом случае к источнику 1 и анализатору спектра 4 (полихроматору) пристыковывается Y-образный приемопередающий оптоволоконный кабель 2а-2б, состоящий из центрального передающего световода и 6-8 приемных световодов, окружающих его. Как вариант может быть использовано два кабеля - передающий и приемный, что в общем случае менее удобно, но в некоторых специальных применениях может оказаться целесообразным. В общих случаях кабель (или кабели) подводятся торцами вплотную к таре 7б с контролируемой жидкостью. При этом объект может находиться вне зоны прямой видимости из прибора, так как кабель допускает изгибы во всех плоскостях.

Далее оптоэлектронный преобразователь 5 переводит зарегистрированный световой сигнал в электрический, пропорциональный интенсивности света, и передает данные в вычислительное устройство 6, в котором производится определение парциальных концентраций компонентов смеси.

При этом следует иметь в виду, что в общем случае произвольного соотношения концентраций они определяются делением интенсивностей друг на друга и расчетом отношения концентраций по формуле:

где - измеренное отношение интенсивностей полос КР 1-го и 2-го компонента смеси;

β - коэффициент связи между этим соотношением и отношением концентраций С12;

σ21 - отношение сечений КР полос комбинационного рассеяния 1-го и 2-го компонентов;

µ12 - отношение молекулярных масс первого и второго компонентов;

α - аппаратурный фактор, зависящий от различия коэффициентов пропускания стенок сосуда, содержащего раствор на длинах волн КР компонентов.

Возможными ошибками, связанными с дисперсией показателя пропускания в стенках сосуда в большинстве случаев, можно пренебречь, поскольку, как показывают проведенные экспериментальные исследования дисперсионных кривых типичных видов тары, выбором длины волны возбуждения всегда можно обеспечить попадание полос КР в область, в которой различиями показателей пропускания можно пренебречь.

Кроме того, при использовании заявленного способа для исследования спиртосодержащих растворов следует иметь в виду, что полосы КР воды и спиртов расположены близко, поэтому в большинстве случаев дисперсия показателя пропускания не сказывается. В отдельных случаях (в частности, при необходимости проведения исследования с очень высокой степенью точности) для сведения ошибки к минимуму можно снабдить вычислительное устройство 6, реализующее алгоритм восстановления парциальных концентраций компонентов раствора по интенсивностям полос КР, специальной базой данных, содержащей набор дисперсионных кривых показателя пропускания для типичных классов сосудов (такая информация может быть получена из справочной литературы).

Значения параметров σ1 и σ2, µ1 и µ2 могут быть получены из справочной литературы (см., например, Романов Н.П., Шуклин B.C. Сечение комбинационного рассеяния жидкой воды. - Оптика и спектроскопия, 1975), что позволяет вычислить коэффициент связи β. В крайнем случае, если получить указанные данные из справочной литературы не представляется возможным, коэффициент связи β между измеряемым соотношением определяемой величиной С12 может быть определен в калибровочном измерении для каждой пары компонентов.

Таким образом, по отношению интенсивностей полос комбинационного рассеяния двух компонентов смеси и с учетом сказанного выше в отношении несущественности дисперсии показателя пропускания α по формуле (1) может быть восстановлено отношение концентраций для каждой пары компонентов. Для того чтобы далее получить значения парциальных концентраций для каждого из компонентов смеси (раствора), необходимо выбрать базовую (реперную) интенсивность полосы КР, по которой будут рассчитываться относительные интенсивности полос КР для каждого из остальных компонентов смеси и соответственно относительные концентрации прочих компонентов. В качестве такой реперной интенсивности может в различных частных случаях выбираться интенсивность полосы КР доминирующего компонента, в частности интенсивность полосы КР воды (при определении концентрации компонентов в водных растворах, в т.ч. спиртосодержащих), либо интенсивность полосы КР этанола (например, при исследовании качества материала для производства спиртных напитков) и т.п.

После выбора реперной интенсивности и определения относительных концентраций каждого компонента (относительно концентрации j-го базового, реперного компонента) для вычисления парциальной концентрации рn каждого из компонентов в смеси (растворе) можно использовать выражение

где n=1…N, N - общее число компонентов смеси.

Таким образом можно обеспечить определение количественного содержания компонентов смеси (раствора) с заданной степенью точности. При этом заявленный способ может успешно использоваться как для контроля неподвижных (отдельных) образцов (предпочтительно контактным способом), так и для последовательного контроля множества образцов, например, закупоренных в тару образцов, движущихся по конвейеру.

В заключение следует еще раз отметить, что вышеуказанный пример осуществления изобретения приведен лишь для лучшего понимания его сущности и не может рассматриваться в качестве ограничивающего объем притязаний полностью определяемого исключительно прилагаемой формулой изобретения.

1. Способ определения количественного содержания компонентов в смеси, в котором последовательно возбуждают исследуемую смесь лазерным излучением с последующим установлением количественного содержания по крайней мере одного компонента на основе интенсивности полосы его комбинационного рассеяния, отличающийся тем, что после возбуждения смеси лазерным излучением регистрируют спектр комбинационного рассеяния ее компонентов, а при установлении количественного содержания компонентов выбирают базовое значение Ij интенсивности полосы комбинационного рассеяния, соответствующей j-му компоненту смеси, где j=1…N, и N - общее число компонентов смеси, после чего определяют отношение интенсивностей полос комбинационного рассеяния каждого из исследуемых компонентов смеси к указанному базовому значению Ik/Ij, где k=1…N, k≠j, вычисляют отношение концентрации Сk каждого компонента к концентрации указанного базового j-го компонента Cj
,
где σkj - отношение сечений полос комбинационного рассеяния k-го и j-го компонентов; µkj - отношение молекулярных масс этих компонентов, после чего вычисляют парциальную концентрацию рn каждого компонента из выражения
, где n=1…N.

2. Способ по п.1, отличающийся тем, что в качестве базового значения интенсивности выбирают зарегистрированное значение интенсивности полос комбинационного рассеяния доминирующего компонента.

3. Способ по п.1 или 2, отличающийся тем, что при наличии в исследуемой смеси воды в качестве базового значения интенсивности выбирают интенсивность соответствующей ей полосы комбинационного рассеяния.

4. Способ по п.1 или 2, отличающийся тем, что при наличии в исследуемой смеси этанола в качестве базового значения интенсивности выбирают интенсивность соответствующей ему полосы комбинационного рассеяния.



 

Похожие патенты:

Изобретение относится к области обогащения и сортировки полезных ископаемых и может быть использовано при обогащении алмазосодержащих руд и сортировке алмазов по качественным характеристикам.

Изобретение относится к устройствам для обнаружения взрывчатого материала в образце. .

Изобретение относится к исследованиям материалов оптическими методами и может быть использовано для контроля наличия рацемической примеси в хиральных системах, например в аминокислотах и сахарах.

Изобретение относится к измерительной технике. .

Изобретение относится к аналитической химии и может быть использовано для определения микроколичеств различных металлов в растворах (питьевой, сточной воде и промышленных отходах)

Изобретение относится к области оптического приборостроения и предназначено для увеличения интенсивности сигнала комбинационного рассеяния света (КРС) путем более эффективного использования возбуждающего лазерного луча и может использоваться в газовых раман-спектрометрах

Изобретение относится к области аналитического приборостроения и может быть использовано для анализа состава многокомпонентных газовых сред. Облучают анализируемую газовую среду лазерным линейно-поляризованным монохроматическим излучением и последовательно регистрируют два спектра комбинационного рассеяния света J||(2) и J⊥(λ). Для первого электрический вектор рассеянного света параллелен электрическому вектору возбуждающего лазерного излучения, а для второго ортогонален. По изотропному спектру рассеяния, полученному из условия J ( λ ) = J | | ( λ ) − 4 3 ⋅ f ( λ ) ⋅ J ⊥ ( λ ) , где f(λ) - представляет собой отношение спектрального коэффициента пропускания аппаратурой излучения, электрический вектор которого параллелен электрическому вектору возбуждающего лазерного излучения, к аналогичному коэффициенту пропускания для ортогональной поляризации, определяют состав анализируемой среды. Изобретение обеспечивает возможность идентификации большего количества компонент исследуемой газовой среды и, соответственно, повышение достоверности анализа. 3 ил.

Система может быть использована при исследовании свойств газовых сред, в том числе, с химическими реакциями, в малых объемах, методами спектроскопии рассеяния или поглощения света. Система включает способные перемещаться в направлении к точке фокуса сборки оптических элементов, каждая из которых содержит два плоских поворотных зеркала в юстировочной головке, обеспечивающей независимый наклон каждого зеркала в двух направлениях, и линзу между ними, установленную на двойном фокусном расстоянии по ходу пучка от измерительного объема. Сборки обеспечивают фокусировку отраженного пучка в той же точке. Одна сборка, содержащая линзу и плоское зеркало или только вогнутое зеркало, направляет лазерный пучок так, что он проходит весь свой путь в обратном направлении, при этом число проходов равно от 4 и более в зависимости от числа установленных сборок оптических элементов. Технический результат - повышение интенсивности полезного сигнала и уменьшение оптических искажений лазерного пучка за счет многократного прохождения лазерного пучка через измерительный объем. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области оптически активных сенсорных технологий, предназначенных для детектирования молекул газов или жидкостей, в том числе токсичных и взрывчатых веществ. В основе метода детектирования молекул с помощью чувствительного элемента на основе щелевых кремниевых микроструктур с наноструктурированным пористым слоем на поверхности кремниевых стенок лежит эффект комбинационного рассеяния света на характерных колебательных модах молекул, усиленный за счет частичной локализации света в среде с периодически модулированным показателем преломления (щелевой кремний). Дополнительное увеличение вероятности взаимодействия света с молекулами детектируемых газа или жидкости может достигаться за счет наличия развитой поверхности пористого слоя, что приводит к значительному повышению чувствительности газового сенсора. 3 н. и 6 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области оптического анализа состава вещества по спектрам рамановского рассеяния и люминесценции и касается спектрально-селективного портативного раман-люминесцентного анализатора. Спектрально-селективный портативный раман-люминесцентный анализатор дополнительно содержит микроскопный объектив или микроскоп и подключенный к компьютеру одно- или двухкоординатный транслятор образца. Анализатор выполнен с возможностью управления устройством перемещения образца, а также синхронизации пошагового сканирования образца и идентификации вещества на каждом шаге с фокусировкой лазерного луча объективом микроскопа в пятно микронных или субмикронных размеров. Технический результат заключается в повышении чувствительности и разрешающей способности, а также в исключении необходимости расшифровки сложных спектров многокомпонентных смесей. 1 ил.

Изобретение относится к области исследования материалов с помощью оптических средств, а также к технологии изготовления полупроводниковых приборов - для контроля водорода в материале при создании приборов и структур. В отношении образца с тестируемым материалом регистрируют спектр комбинационного рассеяния света в геометрии обратного рассеяния. Измерения проводят в диапазоне частот колебаний связей между атомами тестируемого твердотельного материала и связей между атомами тестируемого твердотельного материала и водорода. Когерентное излучение направляют на полупрозрачное зеркало, расположенное между образцом и спектрометром под углом, с возможностью подачи излучения от зеркала на образец в направлении нормали к поверхности тестируемого материала, а отраженного образцом излучения - на спектрометр. Падающее излучение линейно поляризовано. Поляризация рассеянного света совпадает с поляризаций падающего излучения. Используют излучение лазера видимого диапазона от 400 до 800 нм в непрерывном режиме, с мощностью, обеспечивающей отношение сигнал к шуму в спектрах комбинационного рассеяния света от 10 и более. При выборе образца с тестируемым материалом подложки из стекла или кремния с выполненным слоем диоксида кремния и нанесенным на нее слоем аморфного кремния с содержанием атомного водорода от 5 до 50%, толщиной от 30 до 1000 нм регистрируют спектр в диапазоне от 200 до 550 см-1 и от 1900 до 2200 см-1, соответственно, частот колебаний связей Si-Si и связей Si-H. За счет использования геометрии обратного рассеяния снимается ограничение в отношении ассортимента подложек и толщин слоев при получении данных для контроля водорода в твердотельном материале по концентрации и его состоянию как в отношении слоев или приборных структур, формирование которых закончено, так и непосредственно в процессе формирования. 4 з.п. ф-лы, 2 ил.

Изобретение направлено на способ идентификации микроорганизмов из тестируемого образца гемокультуры. Способ предусматривает получение тестируемого образца, селективный лизис и растворение клеток, не являющихся микроорганизмами, тестируемого образца, наслаивание полученного лизата на плотностной буфер в герметичном контейнере и дальнейшее центрифугирование. Плотностный буфер имеет однородную плотность от примерно 1,025 г/мл до примерно 1,120 г/мл. При этом микроорганизмы, проходя через указанный буфер, формируют осадок на дне контейнера. Осадок исследуют с использованием рамановской спектроскопии, что позволяет идентифицировать микроорганизм на уровне рода или вида. Изобретение позволяет идентифицировать микроорганизмы из клинических образцов менее чем за 120 мин. 12 з.п. ф-лы, 4 ил., 3 пр.
Наверх