Способ получения глиноземистого цемента

Изобретение относится к технологии производства глиноземистых вяжущих, используемых в составе огнеупорных изделий, а также строительных композиций сульфатостойких и расширяющихся цементов. Способ получения глиноземистого цемента включает измельчение известкового и алюминатного компонентов до размера частиц не более 30 мкм, их дозировку, введение добавки глиноземистого цемента, перемешивание, увлажнение, брикетирование с последующим обжигом полученных брикетов при температуре 1200-1250°С и тонкий помол продуктов обжига. Брикетирование смеси осуществляют под давлением не менее 15 МПа в брикеты размером не более 60 мм. Технический результат - сокращение технологического цикла производства глиноземистого цемента. 2 з.п. ф-лы, 4 табл.

 

Изобретение относится к технологии производства глиноземистых вяжущих, используемых в составе огнеупорных изделий, а также строительных композиций сульфатостойких и расширяющихся цементов.

Известен способ получения глиноземистого цемента спеканием во вращающихся печах (Кузнецова Т.В., Талабер И. Глиноземистый цемент. М.: Стройиздат, 1988, с.77).

Недостатками указанного способа считают большие теплопотери, повышенный пылеунос и склонность к образованию в зоне спекания так называемых «настылей», минеральных отложений на поверхности огнеупорной футеровки, особенно в случае, когда в составе сырьевой смеси содержание оксида железа превышает 5%.

Известен другой способ получения глиноземистого цемента спеканием в камерных нагревательных печах (туннельных или кольцевых), включающий измельчение известкового (кальциевого) и алюминатного компонентов, их дозировку, перемешивание, увлажнение и брикетирование с последующим обжигом при температуре 1200-1250°С полученных брикетов в камерной нагревательной печи и тонкий помол продуктов обжига. С целью повышения прочности сырых брикетов в состав сырьевой смеси также вводят до 5% глиноземистого цемента (Кузнецова Т.В., Талабер И. Глиноземистый цемент. М.: Стройиздат, 1988, с.76). Указанная технология заимствована из технологии производства керамического кирпича и отличается весьма длительным технологическим циклом. Для туннельных печей он составляет не менее одних суток, а для кольцевых может достигать 2-3 суток. Указанная особенность обусловлена массивностью огнеупорной футеровки печей, а также значительными размерами брикетов, поступающих на обжиг. Обычно они представляют собой параллелепипед с размерами стандартного кирпича 250×120×65 мм. Как огнеупорная футеровка печи, так и кирпич-брикет не допускают ускоренного режима нагрева и охлаждения. Форсированный режим нагрева или охлаждения сопровождается разрушением футеровки и брикетов вследствие «термошока».

Недостатками данного способа являются повышенная длительность технологического цикла и, как следствие, массивности обжиговых печей и низкой интенсивности обжига в них, высокий уровень капитальных затрат производства. Указанное сочетание обуславливает высокую стоимость продукции, что исключает рентабельность данного способа при малых и средних масштабах производства.

Техническая задача, решаемая в изобретении, заключается в создании технологии, отличающейся от известной сокращенным технологическим циклом.

Для получения указанного результата предлагается способ получения глиноземистого цемента, включающий измельчение известкового и алюминатного компонентов, их дозировку, введение добавки глиноземистого цемента, перемешивание, увлажнение, брикетирование с последующим обжигом полученных брикетов при температуре 1200-1250°С и тонкий помол продуктов обжига, в котором известковый и алюминатный компоненты измельчают до размера частиц не более 30 мкм, брикетирование смеси осуществляют под давлением не менее 15 МПа в брикеты размером не более 60 мм.

Дополнительно в состав смеси, включающей известковый и алюминевый компоненты, вводят 1-3% тонкоизмельченного, короткопламенного твердого топлива, например нефтекокса, и 1-2% пластификатора, например ЛСТ (лигносульфонат технический), а продукт обжига, глиноземистый клинкер, размалывают до размера частиц не более 50 мкм в присутствии пластификатора и глиноземсодержащего компонента.

Опытную проверку заявляемого способа осуществляли с использованием материалов, химический состав которых приведен в табл.1.

Таблица 1
Компоненты Содержание компонентов в мас.%
П.п.п SiO2 Al2О3 Fe2O3 CaO MgO SO3
Гидрат глинозема 4,34 0,7 94,4 0,06 - - -
Известняк 43,3 0,15 0,09 0,03 55,51 0,13 0,004
Известь гидратная 38,7 0,16 0,1 0,033 61,0 0,14 0,004
Цемент глиноземист. - 2,8 59,2 3,1 31,7 1,4 1,6

Исходные компоненты со средним размером частиц 30 мкм (гидрат глинозема) и 25 мкм (известковый компонент) тщательно перемешивали, увлажняли и брикетировали, варьируя давление, в цилиндры диаметром и высотой 20 мм. В качестве контрольного использовали композицию, в составе которой известковый компонент, гидратная известь, имели средний размер частиц 80 мкм. Высушенные брикеты обжигали в электронагревательной печи при температуре 1250°С. Качество обжига контролировали по содержанию в продуктах обжига несвязанной извести - СаОсв. Необходимый уровень завершения процесса связывания извести - алюминатные соединения соответствует остатку СаОсв не более 0,5%.

В табл.2 приведены данные для экспериментальных обжигов.

Таблица 2
№№ опытов Экспериментальный состав Контрольный состав
Р, МПа Время, мин CaOсв, % Р, МПа Время, мин CaOсв, %
1 0** 30 6,4 0 30 8,26
2 0** 60 0,9 0 60 5,7
3* 0** 120 0,25/0,5 0 120 2,9/3,3
4 15 30 6,7 15 30 8,1
5 15 60 0,8 15 60 5,5
6* 15 120 0,2/0,4 15 120 2,6/3,2
7 50 30 5,7 50 30 8,95
8 50 60 0,7 50 60 6,0
9* 50 120 0,2/0,3 50 120 2,0/2,4
Примечание: * - в знаменателе представлены данные, полученные при обжиге образцов, имеющих размер 60×60 мм.
** - высушенные брикеты, сформованные без давления, вручную, имеют малую прочность, крошатся, особенно на кромках.

Из представленного следует, что в сравнении с контрольным составом, содержащим грубодисперсный известковый компонент, в заявляемой смеси процесс клинкерообразования протекает значительно быстрее и близок к завершению после 60 мин обжига. Применение брикетирования с усилием при формовании 15 МПа и более позволяет избежать потерь сырья от частичного разрушения образцов. Увеличение размера брикетов свыше 60 мм нецелесообразно, поскольку снижает их термостойкость. Кроме того, с укрупнением размера снижается удельная поверхность теплопередачи материала, что увеличивает количество несвязанной извести, а также адекватным образом, в квадратичной зависимости, возрастает усилие прессования и, как следствие, энергопотребление и стоимость пресса.

В следующей серии опытов в смесь из гидрата глинозема и карбоната кальция вводили тонкоизмельченный нефтекокс, имеющий зольность 1%, и пластификатор - лигносульфонат технический (ЛСТ). Смеси из указанных компонентов брикетировали при усилии 15 МПа в цилиндры с диаметром и высотой, равной 20 мм, и обжигали при температуре 1250°С в течение 60 мин.

Результаты серии содержатся в табл.3.

Таблица 3
№№ Добавка ЛСТ, % Добавка нефтекокса, % Влажность брикетов, % СаОсв, %
5-1 - - 16 1,1
5-2 1 - 14 0,9
5-3 2 - 13 0,8
5-4 - 1 16 0,8
5-5 - 3 17 0,3
5-6 1 3 14 0,2

Как следует из результатов, представленных в табл.3, введение в состав сырьевой смеси пластифицируещей добавки снижает влажность брикетов, что сокращает длительность их сушки и таким образом способствует ускорению клинкерообразования. В присутствии нефтекокса клинкерообразование ускоряется в еще большей степени.

Полученный клинкер размалывали в лабораторной мельнице с добавкой тонкодисперсного глинозема от 10 до 50% в присутствии добавки пластификатора ЛСТ до полного прохождения сквозь сито с ячейкой 50 мкм.

Цементы, полученные таким образом, испытывали на прочность по сжатию в возрасте 1 сутки в образцах-таблетках диаметром и высотой 28 мм. Пластичность цементного теста, из которого готовили образцы, соответствовала расплыву «лепешки» на вискозиметре Суттарда 150+5 мм.

Полученные результаты приведены в табл.4.

Таблица 4
№№ составов Вид добавки Свойства композиции
глинозем лет Водоцементное отношение, % Прочность на сжатие, МПа
Ц-1* - - 0,3 25,1
Ц-2 10 - 0,32 20,5
Ц-3 30 - 0,35 16,4
Ц-4 50 - 0,37 14,1
Ц-5 30 1 0,3 18,9
Ц-6 30 3 0,21 35
* - контрольный состав

В сравнении с контрольным составом Ц-1 добавка тонкодисперсного глинозема, составы Ц2-Ц-4, увеличивает водопотребность и снижает прочность образов. С введением в составы, содержащие глинозем, пластификатора, составы Ц-5, Ц-6, водопотребность падает, а прочность возрастает.

Ускоренное клинкерообразование при относительно низких температурах обжига, достигаемое в заявляемом способе, следует объяснить повышенным значением удельной поверхности сырьевых компонентов, уровень которой обратно пропорционален размеру частиц, а также высокой химической активностью продуктов их термического разложения (дегидратации и декарбонизации). В этом случае синтез алюминатов кальция, составляющих минералогическую основу глиноземистого цемента, осуществляется путем твердофазовых реакций. Добавка в брикетируемую смесь пластификатора снижает ее водопотребность и, таким образом, уменьшает расход тепла на испарение воды и сокращает технологический цикл. Еще в большей степени этот цикл сокращает введение в смесь нефтекокса, горение которого ускоряет разложение карбонатов и гидратов и, одновременно, создает восстановительную среду внутри брикета. Известно, что в этом случае ускоряется синтез многих минералов, в т.ч. и алюминатов кальция.

Введение в состав цемента добавки глинозема повышает огнеупорность изделий на основе такой композиции. Однако при этом понижается их прочность. Пластифицирующая добавка снижает водопотребность и, таким образом, компенсирует разбавление клинкера глиноземом. Более того, эта добавка способствует более тонкому измельчению клинкера, что ускоряет твердение и увеличивает конечную прочность глиноземистого цемента.

Из представленных данных следует, что длительность стадии собственно обжига в заявляемом способе возможно сократить до 1 часа. В этом случае общая продолжительность технологического цикла производства глиноземистого цемента с учетом разогрева и охлаждения составит от 4 до 12 часов. То есть при наличии малогабаритной электропечи с объемом рабочего пространства от 1 до 10 куб.м, оснащенной механизированной загрузкой и разгрузкой, возможно осуществлять в течение одних суток от 2 до 6 обжигов. В этом случае выход продукции с 1 кубометра рабочего объема печи возрастет в 4-12 раз. При этом адекватно снизятся капитальные и эксплуатационные затраты на процесс, что позволит получить глиноземистый цемент по стоимости, соизмеримой с продуктом крупномасштабного предприятия.

1. Способ получения глиноземистого цемента, включающий измельчение известкового и алюминатного компонентов, их дозировку, введение добавки глиноземистого цемента, перемешивание, увлажнение, брикетирование с последующим обжигом полученных брикетов при температуре 1200-1250°С и тонкий помол продуктов обжига, отличающийся тем, что известковый и алюминатный компоненты измельчают до размера частиц не более 30 мкм, а брикетирование смеси осуществляют под давлением не менее 15 МПа в брикеты, размером не более 60 мм.

2. Способ по п.1, отличающийся тем, что в состав смеси, включающей известковый и алюминатный компоненты, вводят 1-3% тонкоизмельченного, короткопламенного твердого топлива, например нефтекокса, и 1-2% пластификатора.

3. Способ по п.1, отличающийся тем, что продукт обжига размалывают до размера частиц не более 50 мкм в присутствии пластификатора и добавки глинозема.



 

Похожие патенты:

Изобретение относится к области производства строительных материалов, в частности к получению строительного раствора из глиноземистого цемента, исходным сырьем которого является высокоглиноземистый шлак, выплавляемый из боксита в доменных печах.
Изобретение относится к сырьевой смеси для получения глиноземистого цемента и может найти применение в промышленности строительных материалов. .
Изобретение относится к способу получения высокоглиноземистого цемента, в частности к их производству при комплексной переработке алюминийсодержащего сырья. .
Вяжущее // 2325362
Изобретение относится к составу вяжущего и может найти применение при изготовлении бетонов и растворов, используемых при сооружении тепловых агрегатов. .
Цемент // 2320596
Изобретение относится к составу цемента и может быть использовано в производстве жаростойкого бетона, при кладке печей. .
Изобретение относится к составу сырьевой смеси для производства глиноземистого цемента. .

Изобретение относится к схватывающейся композиции для использования при нанесении на поверхность покрытий, обладающих долговременной гибкостью и высоким пределом прочности при растяжении.
Изобретение относится к промышленности строительных материалов, а именно к производству жаростойкого вяжущего, и может быть использовано для приготовления жаростойких бетонов и изделий на их основе, изготовления монолитных элементов футеровок тепловых агрегатов, а также для приготовления огнеупорных растворов, клеев и других смесей.
Изобретение относится к промышленности строительных материалов и может найти применение при производстве глиноземистого цемента. .

Изобретение относится к строительным материалам и может быть использовано при изготовлении жаростойких вяжущих веществ. .
Изобретение относится к способам переработки шлаков плавки алюминия и его сплавов, а также к технологиям производства строительных материалов и неорганических веществ, в частности к технологии получения основных хлоридов алюминия
Изобретение относится к технологии получения специальных вяжущих материалов, а именно к производству расширяющихся и безусадочных цементов

Изобретение относится к промышленности строительных материалов и может быть использовано для приготовления жаростойких бетонов и изделий на их основе, изготовления монолитных элементов футеровок тепловых агрегатов, для приготовления торкрет-масс, огнеупорных растворов и сухих смесей с температурой применения 1400-1700°С
Изобретение относится к области производства глиноземистого цемента
Изобретение относится к металлургии, в частности к переработке отходов глиноземного производства - красных шламов, и может быть использовано при производстве ферросплавов
Изобретение относится к области производства глиноземистого цемента
Изобретение относится к области производства глиноземистого цемента

Настоящее изобретение относится к составу вяжущего на основе сульфоглиноземистого клинкера и портландцементного клинкера и может найти применение в промышленности строительных материалов при изготовлении бетона и строительных элементов из бетона. Состав, содержит по меньшей мере в мас.% по отношению к общей массе состава: от 1 до 99% портландцементного клинкера или портландцемента и от 99 до 1% белит-кальций-сульфоглиноземисто-ферритового клинкера (BCSAF), содержащего по меньшей мере в мас.% по отношению к общей массе клинкера BCSAF: от 5 до 30% фазы кальциевого алюминоферрита состава, соответствующего общей формуле C2AxF(1-x), с х, находящимся в интервале от 0,2 до 0,8, от 10 до 35% фазы сульфоалюмината кальция «иелимит» от 40 до 75% белита (C2S), от 0,01 до 10% одной или нескольких второстепенных фаз, выбранных из сульфатов кальция, сульфатов щелочных металлов, перовскита, геленита, свободной извести и периклаза и/или стеклообразной фазы, и общее процентное содержание этих фаз которого больше или равно 97%. Изобретение также относится к бетонам и строительным элементам из него, полученным с использованием указанного состава. Технический результат - сохранение или повышение прочности, в том числе в ранние сроки твердения. 6 н. и 9 з.п. ф-лы, 4 табл.

Настоящее изобретение относится к добавке для гидравлического вяжущего, к составу цемента, бетона и раствора, способу получения бетона и раствора и к применению добавки поликарбоновой кислоты или её солей. Композиция содержит в масс. % относительно общей массы композиции по меньшей мере от 0,01 до 3% поликарбоновой кислоты или ее солей, причем указанная поликарбоновая кислота включает от 2 до 4 карбоксильных групп на молекулу; и от 97 до 99,99% клинкера из Белита и Сульфоалюмината-Феррита Кальция (BCSAF-клинкера), включающего, с выражением в масс.% относительно общей массы BCSAF-клинкера, по меньшей мере от 5 до 30% фазы алюмоферрита кальция с составом, соответствующим общей формуле C2AxF(1-X), в которой X варьирует от 0,2 до 0,8; от 10 до 35% фазы сульфоалюмината кальция «ye′elimite» («иелимита») (C4A3S), от 40 до 75% белита (C2S), от 0,01 до 10% одной или более второстепенных фаз, выбранных из сульфатов кальция, сульфатов щелочных металлов, перовскита, геленита, свободной извести и периклаза, и/или стеклообразной фазы, и для которой общее количество этих фаз в процентах является большим или равным 97%. Изобретение развито в зависимых пунктах формулы изобретения. Технический результат - повышение механической прочности в 28-суточном возрасте. 6 н. и 10 з.п. ф-лы, 6 табл.
Наверх