Двухкоординатный детектор излучений

Изобретение относится к области приборостроения и может быть использовано для регистрации излучений радиационными методами. Технический результат - расширение функциональных возможностей. Для достижения данного результата блок регистрации излучений выполнен в виде сцинтиллирующей пластины. На пластине закреплены на разных плоскостях рядами светопереизлучающие волокна. Волокна расположены перпендикулярно друг другу. Фотодиоды светопереизлучающих волокон расположены на торцах пластины и подключены к схеме регистрации с выходным регистром. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области регистрации излучений радиационными методами и может быть использовано для дефектоскопии изделий в производственных и полевых условиях, а также для обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.

Известен детектор нейтронов, содержащий волоконный модуль, собранный из слоев полимерных сцинтиллирующих оптических волокон, уложенных попеременно в двух взаимно перпендикулярных направлениях, и электронно-оптическую систему регистрации оптического излучения, выходящего из торцов этих волокон, электронно-оптическая система содержит фотоприемники. Патент США №4942302, МПК: G01T 3/06, 1990 г.

Указанное устройство имеет низкую эффективность, т.к. не обеспечивает двухкоординатную регистрацию протонов отдачи с пробегом меньше поперечного сечения одиночного волокна; а также имеет ограничения по количеству волокон в слое и числу слоев, накладываемые числом используемых фотоприемников. Устройство имеет ограниченное пространственное разрешение, определяемое сечением волокна.

Известен детектор нейтронов, выполненный в виде блока из слоев полимерных сцинтиллирующих оптических элементов, уложенных попеременно в двух взаимно перпендикулярных направлениях, содержащий электронно-оптическую систему регистрации оптического излучения, выходящего из торцов этих волокон.

Торцы волокон расположены в плоскостях граней волоконного параллелепипеда, образуемого слоями волокон, а электронно-оптическая система выполнена в виде позиционно-чувствительных фотоприемников, оптически сопряженных с соответствующими гранями волоконного параллелепипеда. Диаметр волокон равен половине длины свободного пробега протона отдачи в материале волокна.

Электронно-оптическая система содержит подсистемы, в которые введены полупрозрачные пластины для ответвления оптической мощности на быстродействующие приемники. Патент Российской Федерации №2119178, МПК: G01T 3/06, 1998 г.

Детектор нейтронов сложен для реализации, имеет низкую эффективность, низкое пространственное разрешение, предназначен для регистрации быстрых нейтронов, не позволяет идентифицировать излучение и определять направление излучения. Размеры элементов ограничены и представляют собой волокна с поперечным размером не более 1 мм.

Известен многослойный детектор, выполненный в виде блока из слоев полимерных сцинтиллирующих оптических элементов, изготовленных из набора материалов, плотность которых монотонно возрастает от первого ряда к последнему слою, и фотоприемники. Рекламный листок Института физики твердого тела Российской Академии Наук, Черноголовка, Московской области. 2005 г. «Антитеррористические просвечивающие установки для экспрессного выявления взрывчатых веществ».

Недостатком такого детектора и установки в целом является необходимость получения изображения скрытых предметов при просвечивании рентгеновским излучением конкретных предметов в явочном порядке. Детектор предназначен для регистрации лишь одного типа излучения, а именно рентгеновского, и не может регистрировать нейтронное излучение.

Известен координатно-чувствительный детектор, содержащий блок из водородосодержащих сцинтиллирующих оптических элементов, уложенных рядами попеременно в двух взаимно перпендикулярных направлениях, и фотоприемники. В детекторе сцинтиллирующие оптические элементы выполнены в виде стержней с прямоугольным сечением, на одной из граней каждого стержня выполнены пазы, в пазах размещены сцинтиллирующие волокна, на торцах волокон расположены фотодиоды, фотодиоды обеспечены выводами для соединения со схемами регистрации сцинтилляционных вспышек. Патент Российской Федерации на полезную модель №54440, МПК: G01T 3/06, 2006 г. Прототип.

Прототип обладает сравнительно низкой технологичностью (обработка каждого отдельного стержня, выполнение в нем канавок и т.п.) изготовления детектора и низким пространственным разрешением, определяемым сечением стержня.

Данное изобретение устраняет недостатки аналогов и прототипа.

Задачей изобретения является разработка технологичного детектора ионизирующих излучений для визуализации пространственного распределения плотности потока ионизирующих излучений с улучшенными свойствами: повышенной эффективностью и пространственным разрешением, стабильностью, механической прочностью, сроком службы. Разработка детекторов практически любой площади, не требующих высоковольтного питания, специальных помещений и т.п.

Техническим результатом изобретения является расширение энергетического диапазона регистрации проникающих излучений и их видов, повышение эффективности сбора света, возникающего в сцинтилляторе при прохождении через него ионизирующей частицы и его транспортировки к фотодиодам, повышение пространственного разрешения регистрации ионизирующей частицы.

Технический результат достигается тем, что в двухкоординатном детекторе, содержащем блок сцинтиллирующих оптических элементов со светопереизлучающими волокнами, на торцах которых расположены фотодиоды, фотодиоды снабжены выводами для соединения со схемами регистрации сцинтилляционных вспышек, блок выполнен в виде, по крайней мере, одной сцинтиллирующей пластины с закрепленными на ней на разных плоскостях рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу, а фотодиоды светопереизлучающих волокон расположены на торцах пластины и подключены к схеме регистрации с выходным регистром.

Двухкоординатный детектор содержит не менее двух сцинтиллирующих пластин с закрепленными на них рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу.

Двухкоординатный детектор содержит не менее двух пар сцинтиллирующих пластин с закрепленными рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу, с возможностью плоскопараллельного перемещения последующей пары относительно предыдущей пары с шагом, не превышающим диаметра светопереизлучающего волокна.

Сущность изобретения поясняется на фиг.1 и 2.

На фиг.1 представлена схема двухкоординатного детектора, где:

1 - пластины сцинтиллятора, 2 - фотоприемные устройства, 3 - светопоглощающий слой (пластина), расположенный между пластинами.

На фиг.2 представлена схема двухкоординатного детектора, где:

1 - пластины сцинтиллятора поперечным размером D,

2 - фотоприемные устройства (фотодиоды), 4 - примеры направления движения ионизирующей частицы.

Рассмотрим работу устройства на примере координатно-чувствительного детектора из одной пластины.

Однокоординатный координатно-чувствительный детектор состоит из сцинтиллирующей пластины 1, фотодиодов 2, расположенных по торцам пластины, и электронной платы с выходным регистром (на фигурах плата не показана).

Материал пластины сцинтиллятора 1 как светосборника прозрачен для света.

При прохождении через пластины сцинтиллятора 1 ионизирующей частицы сигнал возникает в нескольких ближайших фотодиодах 2, количество которых определяется количеством рожденных фотонов. Определение координаты сцинтилляционной вспышки проводят на основании сравнения амплитуд сигналов, поступивших с различных фотодиодов 2, и нахождения центра тяжести пространственного распределения этих сигналов.

Фотодиоды 2 подключены к электронной плате, которая при поступлении сигнала с фотодиода 2 вырабатывает аналоговый сигнал, оцифровывает его и заносит в выходной регистр с указанием времени прихода, номера светопереизлучающего волокна и амплитуды его сигнала.

Материал сцинтиллирующих пластин 1 для регистрации тепловых нейтронов представляет собой сцинтиллирующее стекло, содержащее литий-6.

Материал сцинтиллирующих пластин 1 для регистрации заряженных частиц представляет собой сцинтиллирующее стекло или пластмассовый сцинтиллятор. Материал сцинтиллирующих пластин 1 для регистрации гамма-излучения представляет собой сцинтиллирующее стекло, пластмассовый сцинтиллятор или пластины из NaI(Tl) с выходными окнами из стекла.

Для повышения пространственного разрешения однокоординатный координатно-чувствительный детектор выполнен из нескольких слоев. Причем смежные слои выполнены с возможностью их плоскопараллельного перемещения относительно друг друга. Пространственная координата определяется из анализа амплитуд сигналов, поступивших с различных сцинтиллирующих пластин 1 и фотодиодов 2 координатно-чувствительного детектора в целом.

Шаг, на который один слой смещен относительно другого, меняют в зависимости от числа слоев в пределах от 0 до размера D сцинтиллирующей пластины или разбрасывают по закону случайных чисел в указанных пределах.

Для определения двух координат места пересечения ионизирующей частицей регистрирующего устройства его выполняют из двух идентичных однокоординатных детекторов с взаимно перпендикулярным расположением фотодиодов 2, каждый из которых работает, как описано выше. Как известно, светопереизлучающие волокна обеспечивают эффективный сбор света, возникающего в сцинтиллирующей пластине 1 при прохождении ионизирующей частицы и транспортировке света к фотодиодам 2.

Поэтому для упрощения конструкции в целом и для повышения эффективности регистрации ионизирующих частиц пластины сцинтиллятора 1 снабжены светопереизлучающими волокнами (на фигурах не показаны).

Для уменьшения потерь света в пластине сцинтиллятора 1 светопереизлучающие волокна с пластиной сцинтиллятора 1 соединяют с помощью оптического контакта (клея) - иммерсионной среды с близким (или промежуточным для материалов волокна, сцинтиллятора, выходного окна сцинтиллятора) коэффициентом преломления.

Наличие на пластине сцинтиллятора 1 светопереизлучающих волокон позволило изготовить простейший двухкоординатный детектор излучений с расположением светопереизлучающих волокон на обеих сторонах пластины сцинтиллятора 1.

1. Двухкоординатный детектор, содержащий блок сцинтиллирующих оптических элементов со светопереизлучающими волокнами, на торцах которых расположены фотодиоды, фотодиоды снабжены выводами для соединения со схемами регистрации сцинтилляционных вспышек, отличающийся тем, что блок выполнен в виде, по крайней мере, одной сцинтиллирующей пластины с закрепленными на ней на разных плоскостях рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу, а фотодиоды светопереизлучающих волокон расположены на торцах пластины и подключены к схеме регистрации с выходным регистром.

2. Двухкоординатный детектор по п.1, отличающийся тем, что он содержит не менее двух сцинтиллирующих пластин с закрепленными на них рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу.

3. Двухкоординатный детектор по п.1, отличающийся тем, что он содержит не менее двух пар сцинтиллирующих пластин с закрепленными рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу, с возможностью плоско-параллельного перемещения последующей пары относительно предыдущей пары с шагом, не превышающим диаметра светопереизлучающего волокна.



 

Похожие патенты:

Изобретение относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.

Изобретение относится к области приборостроения и может найти применение для дистанционного обнаружения и контактной идентификации радиоактивных веществ. .

Изобретение относится к области термоэкзоэлектронной дозиметрии электронных пучков; может быть использовано для контроля радиационной обстановки в местах испытания и функционирования импульсных электронных пушек и электронно-лучевой техники.

Изобретение относится к детектированию ядерных излучений и может быть использовано в области нейтронной радиографии, ядерной физике, атомной энергетике, машиностроении, строительстве и других отраслях.

Изобретение относится к сцинтилляционным детекторам гамма- и нейтронного излучения и может быть использовано для фундаментальных исследований в области ядерной физики и физики высоких энергий; в дозиметрической практике в системах радиационного мониторинга трансграничных перемещений людей и грузов, мониторинга помещений аэропортов (проверка пассажиров, их багажа и других грузов), а в связи с глобализацией актов терроризма может быть использовано для мониторинга помещений общественных зданий (допуск в правительственные здания, спортивные комплексы, здания политических, юридических и военных ведомств, театры, филармонии, крупные национальные музеи); для радиационного контроля металлолома, поступающего на переплавку в металлургические предприятия; для радиационного контроля строительных материалов, строительных блоков и металлоконструкций; может быть использовано в интроскопах (томографах) медицинского и технического назначения.

Изобретение относится к области анализа материалов, конкретно к исследованию или анализу предметов радиационными методами для обнаружения радиоактивных материалов и источников.

Изобретение относится к области анализа материалов путем определения их физических свойств, конкретно к исследованию или анализу предметов радиационными методами для обнаружения радиоактивных материалов и источников.

Годоскоп // 2308741
Изобретение относится к области анализа материалов путем определения их физических свойств, конкретно к исследованию или анализу предметов радиационными методами для обнаружения радиоактивных материалов и источников.

Изобретение относится к области анализа материалов путем определения их физических свойств, конкретно к исследованию или анализу предметов радиационными методами для обнаружения радиоактивных материалов и источников.

Изобретение относится к области технологии регистрации нейтрино и антинейтрино, включая солнечные, космические, реакторные нейтрино и нейтрино, получаемые с помощью ускорителей.

Изобретение относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д

Изобретение относится к области обнаружения радиоактивных материалов и источников с помощью радиационных детекторов с пластмассовым сцинтиллятором

Годоскоп // 2371740
Изобретение относится к области обнаружения радиоактивных материалов и источников

Изобретение относится к области регистрации радиационных излучений сцинтилляционными детекторами

Детектор // 2377601
Изобретение относится к области регистрации ионизирующих излучений с помощью сцинтилляционных детекторов

Изобретение относится к регистрации рентгеновского и гамма излучений, к определению их энергетического спектра, к медицинской рентгеновской томографии, к неразрушающему контролю материалов и изделий радиографическим и томографическим методами, к обнаружению источников ионизирующих излучений, к контролю содержимого багажа на контрольно-пропускных пунктах

Изобретение относится к регистрации рентгеновского и гамма-излучений, к определению их энергетического спектра, к медицинской рентгеновской томографии, к неразрушающему контролю материалов и изделий радиографическим и томографическим методами, к обнаружению источников ионизирующих излучений, к контролю содержимого багажа на контрольно-пропускных пунктах

Изобретение относится к области детектирования ядерных излучений, в частности, быстрых нейтронов

Изобретение относится к фотоприемным устройствам для черенковских РИЧ-детекторов (RICH-Ring Imaging Cherenkov), регистрирующих кольцевое черенковское излучение, и может быть использовано в экспериментах в области физики элементарных частиц высоких энергий (ионов, каонов и протонов) для определения их зарядов и скоростей в широком диапазоне их импульсов и для их идентификации

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для обнаружения и идентификации опасных материалов как активными, так и пассивными методами на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, пунктах таможенного досмотра, публичных местах и т.д
Наверх