Способ получения катионита

Изобретение относится к способу получения катионита, который может быть использован в химической и металлургической промышленности при очистке сточных вод от ионов металлов. Способ получения катионита осуществляется путем модификации предварительно фракционированной резиновой крошки (РК) измельченных автомобильных покрышек. В качестве резиновой крошки используют измельченную протекторную резину с размером частиц 0.125-1.0 мм. Модификацию проводят путем обработки резиновой крошки газообразными оксидами азота при температуре 25-50°С. Затем полученный продукт доокисляют кислородом воздуха не менее 2-х часов при постоянном перемешивании. В результате конечный продукт имеет кислотное число в пределах 5.41-10.87 мгКОН/г. Техническим результатом является улучшение технологичности процесса, эффективности, способности извлекать ионы тяжелых металлов, упрощение способа получения катионита. 1 табл.

 

Изобретение относится к способу получения катионита, который может быть использован в химической и металлургической промышленности для очистки сточных вод от ионов ртути.

Известен способ получения катионита путем алкилирования монохлорацетальдегидом привитого сополимера целлюлозы с поли-2-метил-5-винилпиридином с последующим окислением альдегидных групп до карбоксильных (Короткова А.Я., Кряжев Ю.Г., Роговин З.А. [Целлюлоза и ее производные] // Высокомолекулярные соединения. - 1964. - N 6).

Недостатками предложенного метода являются значительное количество образующегося гомополимера, низкое содержание карбоксильных групп в катионите, а также недостаточная статическая обменная емкость, что приводит к снижению сорбционных свойств.

Известен способ получения катионита путем предварительного термического окисления полимера или воздействием на него ионизирующим облучением с последующим термическим или каталитическим разрушением образующихся при окислении гидропероксидов (Сирота А.Г. Модификация структуры и свойств полиолефинов. - Л.: - Химия, 1984. - 146 с.).

Недостатком этого метода является протекание частичной деструкции полимера при термическом окислении и ионизирующем облучении, что снижает механическую прочность, эффективность работы катионита и срок его службы.

Известен способ получения катионита путем гидролиза полиакрило-нитрильного волокна, сшитого гидразигидратом (Энтальпия и термокинетика сорбции ионов 3d-металлов карбоксильным ионообменным волокном ВИОН КН-1/Копылова В.Д., Вальдман А.И., Вальдман Д.И., Портных И.В., Иванова Т.И.// Журнал прикладной химии. - 1996. - N 2. - С.302).

Недостатками этого способа является деструкция полимера при его гидролизе, невысокое содержание карбоксильных групп в получаемом катионите, снижение механической прочности и невозможность использовать его в агрессивных средах.

Известен способ получения волокнистых ионообменных материалов путем свободнорадикальной прививки к целлюлозе виниловых мономеров, содержащих ионогенные группы или группы, способные к превращению в ионогенные (Авторское свидетельство СССР N 444773, кл. С08С 15/00, 1975).

Недостатком этого метода является то, что при прививке к целлюлозе мономеров, таких как, например, акриловая или метакриловая кислота, происходит повышение набухаемости, препятствующее многократному использованию волокнистого ионита в процессе сорбции и десорбции.

Известен способ получения карбоксилсодержащего катионита, заключающийся в предварительной обработке вискозного волокна водным раствором соли Мора с последующей прививкой виниловых мономеров к волокну и обработкой его щелочью (Авторское свидетельство СССР N 806692, C08F 251/02, 1981).

Недостатками этого способа являются многостадийность процесса, образование большого количества гомополимера, что снижает эффективность прививки, большая набухаемость волокна, частичная его деструкция, которая снижает механическую прочность и не позволяет использовать его многократно, а также невозможность использования его в агрессивных средах.

Наиболее близким является способ получения карбоксилсодержащего катионита путем привитой сополимеризации винилового мономера с полимером, причем в качестве винилового мономера используют акриловую или метакриловую кислоту, в качестве полимера используют резиновую крошку, предварительно обработанную в течение 8-16 ч трет-бутилгидропероксидом в кислой среде при массовом соотношении резиновой крошки и трет-бутилгидропероксида 1:1-2.5, причем сополимеризацию проводят при 60-70°С в присутствии активатора распада пероксидных групп и массовом соотношении полимера и винилового мономера 1:1-1.5 (Патент RU 2175268, МКИ B01J 39/20, C08J 11/04, опубл. 27.10.01).

Недостатками способа являются недостаточная сорбционная емкость получаемого катионита, а также нетехнологичность способа, связанная с использованием пероксидов.

Техническим результатом является улучшение технологичности процесса, эффективности, способность извлекать ионы тяжелых металлов, например ртути, упрощение способа получения катионита.

Поставленный технический результат достигается тем, что используют способ получения катионита путем модификации резиновой крошки, отличающийся тем, что модификацию проводят путем ее обработки газообразными оксидами азота при температуре 25-50°С, полученный продукт доокисляют кислородом воздуха не менее 2-х часов при постоянном перемешивании с получением катионита с кислотным числом 5.41-10.87 мгКОН/г. В качестве резиновой крошки используют измельченную протекторную резину с размером частиц 0.125-1.0 мм.

Сущность изобретения заключается в следующем.

Для получения катионита используют предварительно фракционированную резиновую крошку (РК) измельченных автомобильных покрышек. Фракционирование РК проводят на виброситах с диаметром отверстий 0.125, 0.2, 0.63, 1.0 мм. Используют крошку, оставшуюся на ситах, соответствующую размерам 0.125-1.0 мм. Это оптимальный размер исходной резиновой крошки, необходимый для получения модифицированной резиновой крошки с кислотным числом 5,41-10,87 мгКОН/г, обеспечивающий высокую сорбционную емкость.

С целью получения функциональных групп на поверхности фракционированную крошку нитруют оксидами азота и затем доокисляют кислородом воздуха.

Учитывая, что составы резиновых смесей для автомобильных покрышек получают на основе каучуков общего назначения (натурального, изопренового, бутадиен-стирольного и др.), содержащих в основной цепи двойные связи, а также то, что при вулканизации используется не более 5 % двойных связей, процесс образования функциональных групп можно представить схемой на примере изопренового каучука:

Предложенный метод позволяет получить катионит с лучшими свойствами, который может быть использован как в кислой Н-форме (RCOOH), так и в солевой Na-форме (RCOONa).

Сорбция ионов металлов происходит в результате замещения подвижного атома водорода (натрия) в карбоксильной группе на ионы металла, находящиеся в растворе. У ионизированной формы карбоксильного катионита происходит перераспределение электронной плотности и образование равноценных атомов кислорода, которые взаимодействуют с ионами переходных металлов вследствие реализации полярной ковалентной связи с образованием симметричных четырехчленных циклов:

Сорбционная емкость материала зависит от количества присоединенных функциональных групп на поверхности модифицированной резиновой крошки, характеризуемых кислотным числом образца ионообменника. Сшитая, эластичная, устойчивая к воде полимерная основа катионита позволяет сорбировать ионы металлов в различных средах в широких пределах рН раствора.

Взаимодействие оксидов азота с резиновой крошкой автомобильного протектора, протекая по общим закономерностям топохимических процессов, имеет механизм, аналогичный механизму взаимодействия с непредельными каучуками. Это связано с тем, что автомобильные шины изготавливают из резин на основе изопренового, бутадиенового и бутадиенстирольного каучуков и их смесей. С целью достижения максимальной газификации оксидов азота, что обеспечивает равномерную модификацию по всему объему крошки, начальная температура РК и оксидов азота должна быть не менее 25°С (температура кипения оксидов азота 21°С). Превышение начальной температуры более 50°С приводит к деполимеризации полимерной матрицы резиновой крошки, что вызывает ее растворение в водных растворах. Оптимальные время обработки резиновой крошки определяется временем установившегося постоянным давления в реакторе после заполнения его оксидами азота и временем доокисления полученного продукта кислородом воздуха, не менее 2 часов. Меньшее время доокисления не позволяет получить максимальное количество функциональных групп на поверхности РК.

Способ осуществляют следующим образом.

Модификацию разделенной по фракциям РК проводят в круглодонном реакторе, снабженном ртутным манометром. Навеску протекторной резиновой крошки загружают в реактор, термостатируют при температуре 25-50°С и вакуумируют. Вакуум снимают путем заполнения реактора оксидами азота

до выравнивания давления с атмосферным, о чем судят по ртутному манометру. В результате химического взаимодействия оксиды азота хемосорбируются на поверхности резиновой крошки, давление в реакторе опять уменьшается. Обработку ведут по достижению постоянного давления в реакторе. Затем полученный продукт повторно вакуумируют до постоянной массы и доокисляют кислородом воздуха не менее 2 часов при перемешивании.

Определение кислотности крошки проводят обратным титрованием образцов (титрованием 0,1 н. раствора гидроксида натрия, полученного после обработки образца крошки в течение 1 часа, 0,1 н. раствором соляной кислоты).

Получение модифицированной РК иллюстрируется следующими примерами.

Пример 1. В реактор объемом 250 мл, снабженный ртутным манометром, загружают 2 г РК размером частиц 0.125 мм и термостатируют при температуре 25°С в течение 5 минут. Затем реактор вакуумируют при остаточном давлении 3 мм рт.ст. в течение 5 минут, после чего заполняют оксидом азота до выравнивания давления в реакторе с атмосферным. В результате реакции количество оксида азота в реакторе уменьшается, давление опять падает. Реакцию проводят до момента установления в реакторе в течение 5 минут постоянного давления, о чем судят по ртутному манометру. Затем полученный продукт повторно вакуумируют от непрореагировавших оксидов азота и доокисляют кислородом воздуха не менее 2 часов при постоянном перемешивании. Продукт имеет кислотное число 10.87 мгКОН/г.

Пример 2. В отличие от примера 1 в реактор загружают 2 г РК размером частиц 0.125-0.2 мм. Полученный продукт имеет кислотное число 8.91 мгКОН/г.

Пример 3. В отличие от примера 1 в реактор загружают 2 г РК размером частиц 0.2-0.63 мм, а термостатируют при 35°С. Полученный продукт имеет кислотное число 6.56 мгКОН/г.

Пример 4. В отличие от примера 1 в реактор загружают 2 г РК размером частиц 0.63-1.0 мм, а термостатируют при 50°С. Продукт имеет кислотное число 5.41 мгКОН/г.

Натриевую форму катионита получают обработкой модифицированной РК 0.1 н. раствором NaOH с последующей промывкой до нейтральной реакции промывных вод и сушкой на воздухе.

Полученные образцы испытывались на предмет извлечения ионов ртути из водного раствора его соли (Hg(CH3COO)2).

Статическую обменную емкость (СОЕ) определяют по стандартной методике (ГОСТ 20255.1-89. Метод определения статической обменной емкости. - Изд-во стандартов, 1989. - 112 с.).

Пример по извлечению ионов металлов осуществляют следующим образом: в коническую колбу помещают раствор, содержащий ионы металла (5 мг/л) и добавляют 1 г карбоксилсодержащей крошки. После истечения 24 часов определяют концентрацию раствора по стандартной методике (Салдадзе К. М., Пашков А.Б., Титов B.C. Ионообменные высокомолекулярные соединения. - М.: Госхимиздат, 1960. - 365 с.). Результаты проведенных исследований представлены в таблице.

Таблица
Результат исследований по извлечению ионов ртути модифицированной резиновой крошкой
Крошка Размер, мм Кислотное число, мгКОН/г СОЕ, мг-экв./г Сорбционная емкость на Hg2+ мг-экв./г
Немодифицированная резиновая крошка 0.2-0.63 0.12 0.8 0.13
Немодифицированная резиновая крошка 0.63-1.0 0.08 0.53 0.12
Н-форма (пример 1) 0.125 10.87 4.13 1.86
Н-форма (пример 2) 0.125-0.2 8.91 3.55 1.78
Н-форма (пример 3) 0.2-0.63 6.56 3.43 1.7
Н-форма (пример 4) 0.63-1.0 5.41 3.21 1.4
Na-форма 0.2-0.63 - 1.9
Na-форма 0.63-1.0 - 1.82

Из представленных данных видно, что в исследованных условиях образцы модифицированной резиновой крошки имеют более высокую сорбционную емкость в Na-форме, чем образцы в Н-форме. Сорбционная емкость ионов ртути в полученных катионитах составляет: для размера 0.2-0.63 мм - 1.7 ( для Na-формы - 1.9) мг-экв./г; для размера 0.63-1.0 мм - 1.4 (для Na-формы - 1.82) мг-экв./г.

1. Способ получения катионита путем модификации резиновой крошки, отличающийся тем, что модификацию проводят путем ее обработки газообразными оксидами азота при температуре 25-50°С, полученный продукт доокисляют кислородом воздуха не менее 2 ч при постоянном перемешивании с получением катионита с кислотным числом 5,41-10,87 мгКОН/г.

2. Способ получения катионита по п.1, отличающийся тем, что в качестве резиновой крошки используют измельченную протекторную резину с размером частиц 0,125-1,0 мм.



 

Похожие патенты:
Изобретение относится к переработке промышленных отходов, в частности к переработке медицинских отходов, а именно к получению из них безвредных продуктов. .

Изобретение относится к способам увеличения ресурса деталей. .
Изобретение относится к шинной и резинотехнической промышленности. .

Изобретение относится к резиновой промышленности, в частности к способу деструкции эластомерного материала с получением регенерата резины. .
Изобретение относится к способу получения углеродсодержащей дисперсии и может быть использовано в производстве наполненных жидких каучуков, а также при получении добавок для резиновых смесей.

Изобретение относится к технологии разрушения полимерных материалов, такого как полиоктен. .

Изобретение относится к устройствам для переработки отходов и может быть использовано для переработки резиновых отходов, пластмассовых изделий, мусора и т.п. .
Изобретение относится к способу получения полиольного компонента путем переработки твердых отходов производства пенополиуретана - поролона марок А и Б. .
Изобретение относится к способу получения полиольного компонента для производства пенополиуретана. .
Изобретение относится к области производства строительных материалов и может быть использовано для изготовления плит, обладающих звукоизоляционными свойствами. .

Изобретение относится к способу получения катионита, который может быть использован в химической и металлургической промышленности при очистке сточных вод от ионов металлов

Изобретение относится к способу получения катионита, который может быть использован в химической и металлургической промышленности для очистки сточных вод от ионов ртути

Изобретение относится к области ионного обмена. Описаны катионообменники, полученные сульфонированием суспензионных (бисерных) полимеризатов, состоящих из одного или нескольких винилароматических мономеров, дивинилбензола и от 0,2 до 20 вес.% простых виниловых эфиров. Предложен способ их получения. Изобретение обеспечивает получение сильнокислых катионообменников с высокой механической и осмотической стабильностью, а также высокой устойчивостью к окислению. 3 н. и 5 з.п. ф-лы, 2 табл., 10 пр.
Наверх