Солнечная фотоэнергосистема (варианты)

Изобретение относится к солнечной энергетике, в частности к солнечным энергетическим установкам с концентраторами солнечного излучения для выработки электроэнергии путем фотоэлектрического преобразования солнечной энергии. Солнечная фотоэнергосистема включает подсистему слежения за положением Солнца и установленные на подсистеме фотоэлектрические модули. Каждый модуль включает, по меньшей мере, один первичный линзовый концентратор солнечного излучения, по меньшей мере, один фотоэлемент с фотоактивной центральной областью, окруженной пассивной контактной областью, и, по меньшей мере, один вторичный концентратор. Вторичный концентратор может быть выполнен в виде полых фокона или усеченной четырехгранной пирамиды с внутренними отражающими поверхностями, либо в виде сплошных фокона или усеченной четырехгранной пирамиды. Первые два вторичных концентратора закреплены на пассивной контактной области посредством токосборной шины, выступающей за пределы вторичного концентратора. Широкая часть вторичных концентраторов сверху может быть закрыта стеклянной пластиной, на которую с двух сторон нанесено антиотражающее покрытие. Верхний торец вторичного концентратора может быть закрыт расположенным на упомянутой пластине металлическим экраном. Металлический экран может быть закреплен на упомянутой пластине путем завальцовки внешнего края металлического экрана на наружную поверхность вторичного концентратора. Третий и четвертый вторичные концентраторы закреплены на поверхности фотоактивной центральной области фотоэлемента посредством оптически прозрачного клея. Изобретение должно обеспечить высокую эффективность преобразования солнечного излучения в электроэнергию и при этом не требовать точной ориентации модулей на Солнце. 4 н. и 4 з.п. ф-лы, 5 ил.

 

Изобретение относится к солнечной энергетике, в частности к солнечным энергетическим установкам с концентраторами солнечного излучения для выработки электроэнергии путем фотоэлектрического преобразования солнечной энергии.

Известна солнечная энергетическая установка (см. патент RU №2303205, МПК F24J 2/42, опубликован 20.07.2007), содержащая стационарный параболоцилиндрический концентратор солнечной энергии и приемник, установленный в фокальной области. На входной поверхности миделя концентратора на общей раме по оси Восток-Запад размещена система гелиостатов угловой формы, выполненных в виде жалюзи из плоских зеркальных фацет, плоскости которых находятся под углом 120° друг к другу и установлены под углом µ=114°-φ+δ к плоскости миделя, где - φ географическая широта местоположения концентратора, δ - склонение солнечных лучей. Известная установка позволяет увеличить время работы стационарного концентратора как в суточном, так и в годовом режиме работы, повысить суммарную выработку электроэнергии в год и упростить конструкцию солнечных энергосистем за счет исключения из конструкции систем слежения.

Недостатками известной солнечной энергетической установки являются низкая эффективность концентрирования солнечного излучения и, соответственно, низкая эффективность установки.

Известен солнечный электрогенератор (см. заявку US №2007221209, МПК F24J 2/10, опубликована 27.09.2007), включающий механическую систему, поддерживающую первую отражающую поверхность, фокусирующую солнечное излучение в линию, сформированную изгибом по первой оси, и вторую отражающую поверхность, фокусирующую солнечное излучение в линию, сформированную изгибом по второй оси, перпендикулярной к первой оси. Фокальное расстояние второй отражающей поверхности короче фокусного расстояния первой отражающей поверхности для того, чтобы пересечь фокальные линии первой и второй отражающих поверхностей в фокусе.

Недостатком известного солнечного электрогенератора является неэффективное концентрирование солнечного излучения.

Известен солнечный генератор электроэнергии (см. патент ЕР №1766298, МПК F24J 2/00, опубликован 28.03.2007), включающий установленный на механической системе вогнутый отражатель, состоящий из множества отражательных плоских элементов, и множество фотогальванических ячеек, расположенных в фокусе перед отражающими элементами.

Недостатками известного солнечного генератора электроэнергии являются отсутствие слежения за положением Солнца и, соответственно, низкая суточная и годовая эффективность установки.

Наиболее близкой к заявляемому техническому решению по совокупности существенных признаков является солнечная фотоэнергосистема (см. патент RU №2286517, МПК F24J 2/42, опубликован 27.10.2006), включающая подсистему слежения за положением Солнца и установленные на подсистеме слежения фотоэлектрические модули с солнечными концентраторами, содержащими линзы Френеля, и принимающими излучение фотоэлектрическими преобразователями. Известная солнечная фотоэнергосистема - прототип имеет относительно простую конструкцию и технологию монтажа.

К недостатку известной солнечной фотоэнергосистемы следует отнести необходимость точной ориентации модулей на Солнце, чтобы обеспечить высокую эффективность преобразования солнечного излучения в электроэнергию.

Задачей заявляемого технического решения являлась разработка солнечной фотоэнергосистемы, которая бы обеспечивала высокую эффективность преобразования солнечного излучения в электроэнергию и при этом не требовала точной ориентации модулей на Солнце.

Поставленная задача решается группой изобретений, объединенных единым изобретательским замыслом.

По одному варианту солнечная фотоэнергосистема включает подсистему слежения за положением Солнца и установленные на подсистеме слежения фотоэлектрические модули. Каждый из модулей включает один или несколько первичных линзовых концентраторов солнечного излучения, один или несколько фотоэлементов с фотоактивной центральной областью, окруженной пассивной контактной областью, и один или несколько вторичных концентраторов, выполненных в виде полого фокона с внутренней отражающей поверхностью, закрепленного на пассивной контактной области посредством токосборной шины, выступающей за пределы фокона. Максимальный размер выходной апертуры узкой части фокона равен максимальному размеру фотоактивной центральной области, а максимальный размер d2 входной апертуры широкой части фокона удовлетворяет соотношению:

;

где D - максимальный размер апертуры первичного линзового концентратора, м;

F - фокусное расстояние первичного линзового концентратора, м;

α - максимальный угол разориентации оптических осей модулей, обеспечиваемый подсистемой слежения, рад;

h - высота фокона, определяемая из соотношения:

При этом максимальный размер d1 фотоактивной центральной области фотоэлемента удовлетворяет соотношению:

где k - заданная степень концентрирования солнечного излучения.

Использование полого фокона с приведенными выше геометрическими параметрами улучшает разориентационную характеристику модуля относительно Солнца.

Широкая часть фокона может быть сверху закрыта стеклянной пластиной, на которую с двух сторон нанесено антиотражающее покрытие, а торец широкой части фокона может быть закрыт расположенным на стеклянной пластине металлическим экраном с центральным отверстием, равным входной апертуре широкой части фокона.

Металлический экран может быть закреплен на стеклянной пластине путем завальцовки внешнего края металлического экрана на наружную поверхность фокона.

По второму варианту солнечная фотоэнергосистема включает подсистему слежения за положением Солнца и установленные на подсистеме слежения фотоэлектрические модули. Каждый из модулей включает один или несколько первичных линзовых концентраторов солнечного излучения, один или несколько фотоэлементов с фотоактивной центральной областью, окруженной пассивной контактной областью, и один или несколько вторичных концентраторов, выполненных в виде полой усеченной четырехгранной пирамиды с внутренней отражающей поверхностью, закрепленной меньшим основанием на пассивной контактной области посредством токосборной шины, выступающей за пределы меньшего основания пирамиды. Размеры выходной апертуры узкой части усеченной четырехгранной пирамиды равны размерам фотоактивной центральной области, а размеры d2 входной апертуры широкой части усеченной четырехгранной пирамиды удовлетворяют соотношению:

;

где D - максимальный размер апертуры первичного линзового концентратора, м;

F - фокусное расстояние первичного линзового концентратора, м;

α - максимальный угол разориентации оптических осей модулей, обеспечиваемый подсистемой слежения, рад;

h - высота усеченной четырехгранной пирамиды, определяемая из соотношения:

.

При этом максимальный размер d1 фотоактивной центральной области фотоэлемента удовлетворяют соотношению:

;

где k - заданная степень концентрирования солнечного излучения.

Полая усеченная четырехгранная пирамида с приведенными выше геометрическими параметрами обеспечивает улучшение разориентационной характеристики модуля относительно Солнца.

Широкая часть усеченной четырехгранной пирамиды может быть сверху закрыта стеклянной пластиной, на которую с двух сторон нанесено антиотражающее покрытие, а верхний торец усеченной четырехгранной пирамиды может быть закрыт расположенным на стеклянной пластине металлическим экраном с центральным отверстием, равным входной апертуре широкой части усеченной четырехгранной пирамиды.

Металлический экран может быть закреплен на стеклянной пластине завальцовкой внешнего края металлического экрана на наружную поверхность усеченной четырехгранной пирамиды.

По третьему варианту солнечная фотоэнергосистема включает подсистему слежения за положением Солнца и установленные на этой подсистеме фотоэлектрические модули. Каждый из фотоэлектрических модулей включает один или несколько первичных линзовых концентраторов солнечного излучения, один или несколько фотоэлементов с фотоактивной центральной областью, окруженной пассивной контактной областью, и один или несколько вторичных концентраторов, выполненных в виде изготовленного из оптического стекла сплошного фокона, закрепленного на поверхности фотоактивной центральной области посредством оптически прозрачного клея, при этом максимальный размер выходной апертуры узкой части фокона равен максимальному размеру фотоактивной центральной области, высота h фокона удовлетворяет соотношению:

;

где n - показатель преломления материала фокона;

D - максимальный размер апертуры первичного линзового концентратора, м;

F - фокусное расстояние первичного линзового концентратора, м;

α - максимальный угол разориентации оптических осей модулей, обеспечиваемый подсистемой слежения, рад;

максимальный размер d1 фотоактивной центральной области фотоэлемента удовлетворяет соотношению:

;

где k - заданная степень концентрирования солнечного излучения; максимальный размер d2 входной апертуры широкой части фокона удовлетворяет соотношению:

Использование сплошного фокона с приведенными выше геометрическими параметрами улучшает разориентационную характеристику модуля относительно Солнца.

По четвертому варианту солнечная фотоэнергосистема включает подсистему слежения за положением Солнца и установленные на подсистеме слежения фотоэлектрические модули. Каждый из фотоэлектрических модулей включает один или несколько первичных линзовых концентраторов солнечного излучения, один или несколько фотоэлементов с фотоактивной центральной областью, окруженной пассивной контактной областью, и один или несколько вторичных концентраторов, выполненных в виде изготовленной из оптического стекла сплошной усеченной четырехгранной пирамиды, закрепленной меньшим основанием на поверхности фотоактивной центральной области посредством оптически прозрачного клея. Размеры выходной апертуры узкой части усеченной четырехгранной пирамиды равны размерам фотоактивной центральной области, высота h усеченной четырехгранной пирамиды удовлетворяет соотношению:

;

n - показатель преломления материала усеченной четырехгранной пирамиды;

D - максимальный размер апертуры первичного линзового концентратора, м;

F - фокусное расстояние первичного линзового концентратора, м;

α - максимальный угол разориентации оптических осей модулей, обеспечиваемый подсистемой слежения, рад;

размеры d1 фотоактивной центральной области удовлетворяют соотношению:

;

где k - заданная степень концентрирования солнечного излучения; размеры d2 входной апертуры широкой части усеченной четырехгранной пирамиды удовлетворяют соотношению:

Сплошная усеченная четырехгранная пирамида с приведенными выше геометрическими параметрами обеспечивает улучшение разориентационной характеристики модуля относительно Солнца.

Указанные выше значения параметров d2, h, d1 обеспечивают минимальные оптические потери и наибольшую эффективность модуля при разориентации оптических осей относительно солнечных лучей в пределах α=0-2°. Степень концентрирования солнечного излучения k задается в диапазоне 500-1000 крат. В случае, если высота h, а также размер входной апертуры d2 вторичного концентратора превысят указанные в п.1, п.4, п.7, п.8 значения параметров d2, и h, то увеличится расход материала при изготовлении вторичного концентратора и, соответственно, стоимость установки, а также уменьшится эффективность концентрирования солнечного излучения при разориентации оптических осей в пределах α и, соответственно, эффективность фотоэлектрического модуля. В случае, если размер фотоактивной центральной области d1 превысит указанные в п.1, п.4, п.7, п.8 значения параметра d1, то уменьшится эффективность концентрирования солнечного излучения. В случае, если высота и размер входной апертуры вторичного концентратора будут меньше указанных в п.1, п.4, п.7, п.8 значений параметров d2, и h, то уменьшится эффективность концентрирования солнечного излучения при разориентации оптических осей в пределах α. В случае, если максимальный размер фотоактивной центральной области будет меньше указанных в п.1, п.4, п.7, п.8 значений параметра d1, то уменьшится эффективность концентрирования солнечного излучения.

Заявляемое техническое решение поясняется чертежами, где:

на фиг.1 показана солнечная фотоэнергосистема, вид сбоку;

на фиг.2 изображен фотоэлектрический модуль с одним первичным концентратором и одним вторичным концентратором, выполненным в виде полого фокона с внутренней отражающей поверхностью в продольном разрезе;

на фиг.3 показана разориентация модуля с полым вторичным концентратором в продольном разрезе;

на фиг.4 изображен фотоэлектрический модуль с одним первичным концентратором и одним вторичным концентратором, выполненным в виде стеклянной сплошной усеченной четырехгранной пирамиды в продольном разрезе;

на фиг.5 показана разориентация модуля со сплошным вторичным концентратором в продольном разрезе.

Заявляемая солнечная фотоэнергосистема 1 (см. фиг.1) содержит фотоэлектрические модули 2, установленные на подсистему 3 слежения за положением Солнца. В качестве подсистемы 3 слежения может быть использована любая известная конструкция. Фотоэлектрический модуль 2 содержит боковые и тыльную панели 4 (см. фиг.2, фиг.4) и монолитную фронтальную панель 5 (см. фиг.1) с одним или несколькими первичными оптическими концентраторами в виде, например, линз 6 Френеля (см. фиг.2) или плоско-выпуклых линз 7 (см. фиг.4) с фокусным расстоянием F. Соответственно один или несколько вторичных оптических концентраторов могут быть выполнены в виде полого фокона 8 (см. фиг.2), в виде полой усеченной четырехгранной пирамиды 9 (см. фиг.3) с внутренней отражающей поверхностью 10 (см. фиг.2), в виде изготовленных из оптического стекла сплошного фокона 11 (см. фиг.4) или сплошной усеченной четырехгранной пирамиды 12 (см. фиг.5). Полые вторичные оптические концентраторы 8, 9 закреплены меньшим основанием на пассивной контактной области 13 фотоэлементов 14 посредством токосборной шины 15. Фотоэлементы 14 размещены на фронтальной поверхности тыльной панели 4 соосно соответствующим первичным оптическим концентраторам 6 или 7. Большие основания полого фокона 8 и полой усеченной четырехгранной пирамиды 9 могут быть закрыты стеклянной пластиной 16, на которую с двух сторон нанесено антиотражающее покрытие 17, верхние торцы полого фокона 8 и полой усеченной четырехгранной пирамиды 9 могут быть закрыты расположенным на стеклянной пластине металлическим экраном 18 (см. фиг.2) с центральным отверстием, равным входной апертуре широкой части вторичного концентратора. Металлический экран 18 может быть закреплен на стеклянной пластине путем завальцовки внешнего края 19 металлического экрана на наружную поверхность полого фокона 8 или полой усеченной четырехгранной пирамиды 9. Размеры большего и меньшего оснований, а также высота вторичного концентратора 8, 9, 11, 12 выбраны из условия обеспечения наибольшей эффективности модуля при разориентации оптических осей в пределах угла α (см. фиг.3, фиг.5). Угол α может быть в пределах 0-2°. Вторичные оптические концентраторы, выполненные в виде изготовленных из оптического стекла сплошного фокона 11 (см. фиг.4) или сплошной усеченной четырехгранной пирамиды 12 (см. фиг.5), закрепляют на поверхности фотоактивной центральной области 20 фотоэлемента 14 посредством оптически прозрачного клея 21 (см. фиг.4).

При работе заявляемого солнечного фотоэлектрического модуля 2, первичные оптические концентраторы 6, 7, а также вторичные оптические концентраторы 8, 9, 11, 12, параметры которых соответствуют приведенным выше соотношениям, эффективно концентрируют солнечный свет и фокусируют его на светочувствительных поверхностях солнечных фотоэлементов 14 даже при разориентации оптических осей в пределах угла α=0-2°. Солнечные фотоэлементы 14 преобразуют энергию квантов света в электрическую, создавая разность потенциалов на своих контактах. Вырабатываемая модулем 2 электроэнергия подается к внешнему потребителю или накопителю энергии.

1. Солнечная фотоэнергосистема, включающая подсистему слежения за положением Солнца и установленные на упомянутой подсистеме фотоэлектрические модули, каждый из которых включает, по меньшей мере, один первичный линзовый концентратор солнечного излучения, по меньшей мере, один фотоэлемент с фотоактивной центральной областью, окруженной пассивной контактной областью, и, по меньшей мере, один вторичный концентратор, выполненный в виде полого фокона с внутренней отражающей поверхностью, закрепленного на пассивной контактной области посредством токосборной шины, выступающей за пределы фокона, при этом максимальный размер выходной апертуры узкой части фокона равен максимальному размеру фотоактивной центральной области, а максимальный размер d2 входной апертуры широкой части фокона удовлетворяет соотношению:

где D - максимальный размер апертуры первичного линзового концентратора, м;
F - фокусное расстояние первичного линзового концентратора, м;
α - максимальный угол разориентации оптических осей модулей, обеспечиваемый подсистемой слежения, рад;
h - высота фокона, определяемая из соотношения:

а максимальный размер d1 фотоактивной центральной области фотоэлемента удовлетворяет соотношению:

где k - заданная степень концентрирования солнечного излучения.

2. Фотоэнергосистема по п.1, отличающаяся тем, что широкая часть фокона сверху закрыта стеклянной пластиной, на которую с двух сторон нанесено антиотражающее покрытие, торец широкой части фокона закрыт расположенным на стеклянной пластине металлическим экраном с центральным отверстием, равным входной апертуре широкой части фокона.

3. Фотоэнергосистема по п.2, отличающаяся тем, что металлический экран закреплен на стеклянной пластине путем завальцовки внешнего края металлического экрана на наружную поверхность фокона.

4. Солнечная фотоэнергосистема, включающая подсистему слежения за положением Солнца и установленные на упомянутой подсистеме фотоэлектрические модули, каждый из которых включает, по меньшей мере, один первичный линзовый концентратор солнечного излучения, по меньшей мере, один фотоэлемент с фотоактивной центральной областью, окруженной пассивной контактной областью, и, по меньшей мере, один вторичный концентратор, выполненный в виде полой усеченной четырехгранной пирамиды с внутренней отражающей поверхностью, закрепленной меньшим основанием на пассивной контактной области посредством токосборной шины, выступающей за пределы меньшего основания пирамиды, при этом размеры выходной апертуры узкой части усеченной четырехгранной пирамиды равны размерам фотоактивной центральной области, а размеры d2 входной апертуры широкой части усеченной четырехгранной пирамиды удовлетворяют соотношению:

где D - максимальный размер апертуры первичного линзового концентратора, м;
F - фокусное расстояние первичного линзового концентратора, м;
α - максимальный угол разориентации оптических осей модулей, обеспечиваемый подсистемой слежения, рад;
h - высота усеченной четырехгранной пирамиды, определяемая из соотношения:

а размеры d1 фотоактивной центральной области удовлетворяют соотношению:

где k - заданная степень концентрирования солнечного излучения.

5. Фотоэнергосистема по п.4, отличающаяся тем, что широкая часть усеченной четырехгранной пирамиды сверху закрыта стеклянной пластиной, на которую с двух сторон нанесено антиотражающее покрытие, верхний торец усеченной четырехгранной пирамиды закрыт расположенным на стеклянной пластине металлическим экраном с центральным отверстием, равным входной апертуре широкой части усеченной четырехгранной пирамиды.

6. Фотоэнергосистема по п.5, отличающаяся тем, что металлический экран закреплен на стеклянной пластине путем завальцовки внешнего края металлического экрана на наружную поверхность усеченной четырехгранной пирамиды.

7. Солнечная фотоэнергосистема, включающая подсистему слежения за положением Солнца и установленные на упомянутой подсистеме фотоэлектрические модули, каждый из которых включает, по меньшей мере, один первичный линзовый концентратор солнечного излучения, по меньшей мере, один фотоэлемент с фотоактивной центральной областью, окруженной пассивной контактной областью, и, по меньшей мере, один вторичный концентратор, выполненный в виде изготовленного из оптического стекла сплошного фокона, закрепленного на поверхности фотоактивной центральной области посредством оптически прозрачного клея, при этом максимальный размер выходной апертуры узкой части фокона равен максимальному размеру фотоактивной центральной области, высота h фокона удовлетворяет соотношению:

где n - показатель преломления материала фокона;
D - максимальный размер апертуры первичного линзового концентратора, м;
F - фокусное расстояние первичного линзового концентратора, м;
α - максимальный угол разориентации оптических осей модулей, обеспечиваемый подсистемой слежения, рад;
максимальный размер d1 фотоактивной центральной области удовлетворяет соотношению:

где k - заданная степень концентрирования солнечного излучения; а максимальный размер d2 входной апертуры широкой части фокона удовлетворяет соотношению:

8. Солнечная фотоэнергосистема, включающая подсистему слежения за положением Солнца и установленные на упомянутой подсистеме фотоэлектрические модули, каждый из которых включает, по меньшей мере, один первичный линзовый концентратор солнечного излучения, по меньшей мере, один фотоэлемент с фотоактивной центральной областью, окруженной пассивной контактной областью, и, по меньшей мере, один вторичный концентратор, выполненный в виде изготовленной из оптического стекла сплошной усеченной четырехгранной пирамиды, закрепленной меньшим основанием на поверхности фотоактивной центральной области посредством оптически прозрачного клея, при этом размеры выходной апертуры узкой части усеченной четырехгранной пирамиды равны размерам фотоактивной центральной области, высота h усеченной четырехгранной пирамиды удовлетворяет соотношению:

где n - показатель преломления материала усеченной четырехгранной пирамиды;
D - максимальный размер апертуры первичного линзового концентратора, м;
F - фокусное расстояние первичного линзового концентратора, м;
α - максимальный угол разориентации оптических осей модулей, обеспечиваемый подсистемой слежения, рад;
размеры d1 фотоактивной центральной области удовлетворяют соотношению:

где k - заданная степень концентрирования солнечного излучения; а размеры d2 входной апертуры широкой части усеченной четырехгранной пирамиды удовлетворяют соотношению:



 

Похожие патенты:

Изобретение относится к области использования солнечной и ветровой энергий и предназначено для получения горячей воды для бытовых нужд в южных регионах России. .

Изобретение относится к солнечной энергетике и может найти применение в солнечных электростанциях для преобразования солнечной энергии в электрическую, а также в качестве энергетической установки индивидуального пользования.

Изобретение относится к области гелиоэнергетики, в которой применяются темные гелиопоглощающие и лучеотражающие зеркальные поверхности с целью использования тепловой энергии солнечных лучей для выработки товарной электрической и тепловой энергии, а кроме того, одновременно и для отражения солнечных лучей от приземных поверхностей в верхние слои атмосферы и в космическое пространство, за счет чего часть тепловой энергии солнечных лучей передается в космическое пространство вместо нагрева приземных слоев окружающей среды.

Изобретение относится к энергетике, а точнее к гелиотехнике, и может быть использовано для энергоснабжения потребителей. .

Изобретение относится к области вентиляции и может быть использовано для естественной вентиляции зданий, сооружений, например, животноводческих помещений. .

Изобретение относится к теплоэнергетике, в частности к солнечным установкам для преобразования энергии солнца в тепловую энергию, и может быть использовано, например, при обогреве любых помещений, а также в сельском хозяйстве.

Изобретение относится к области гелиотехники, в частности к сельскому хозяйству, для обеспечения электрической энергией и теплом сельскохозяйственных и других потребителей, удаленных от источников централизованного электроснабжения и тепло - и топливообеспечения.

Изобретение относится к области солнечной энергетики, а именно к развитию конструкций и технологий гелиоаэробарических теплоэлектростанций, в том числе к применению в них дополнительных источников электрогенерации, параллельных электрогенератору ветротурбины.

Изобретение относится к солнечной энергетике и может быть использовано при создании аэродинамических гелиостанций. .

Изобретение относится к гелио-ветроэнергетике и может быть использовано в системах отопления и горячего водоснабжения бытового и промышленного назначения

Изобретение относится к области гелиоэнергетики, а именно к тому ее разделу, где производятся совместно электрическая и тепловая энергия с использованием для этого в качестве источников исходной энергии солнечной энергии

Изобретение относится к устройствам преобразования солнечной энергии в электрическую, в частности к конструкциям солнечных энергетических установок

Изобретение относится к области гелиотехники, в частности к солнечным энергетическим установкам с концентраторами и солнечными элементами в фокальной области

Изобретение относится к солнечной энергетике и может найти применение как в солнечных электростанциях, так и в качестве энергетической установки индивидуального пользования

Изобретение относится к области гелиоэнергетики

Изобретение относится к гелиотехнике, а именно к средствам получения тепла, холода и электричества с помощью солнечной энергии

Изобретение относится к автономным устройствам энергоснабжения средств навигационного оборудования (СНО) берегового и морского базирования как источника питания для подзарядки накопителей энергии (аккумуляторных батарей) с термоэлектрическим преобразованием энергии Солнца

Изобретение относится к гелиотехнике, а именно к комбинированным солнечно-энергетическим станциям для получения тепла и электричества

Изобретение относится к строительной гелиотехнике
Наверх