Гетерогенный источник тока

Гетерогенный источник тока относится к устройствам, преобразующим энергию ядерного распада в электрическую энергию, и может быть использован в производстве компактных источников электрического тока длительного пользования. Заявленное устройство характеризуется тем, что анод и катод выполнены в виде пластин из магнитопроницаемого материала, а обращенные внутрь источника тока поверхности анода и катода снабжены серебряными зеркальными покрытиями. При этом анод контактирует с южными полюсами первых постоянных магнитных элементов из одной и более пар, а катод контактирует с северными полюсами вторых постоянных магнитных элементов из одной и более пар. В прозрачный электропроводящий слой введены микрокапсулы из прозрачного диэлектрика с помещенными в них микрочастицами смеси сцинтилляторов и делящегося вещества в количестве, определяемом приводимым выражением. Техническим результатом изобретения является повышение выработки электрического тока за счет многовариантности преобразования энергии ядерного распада в электрическую энергию, в том числе с промежуточным преобразованием энергии испускаемых заряженных частиц и продуктов деления в энергию электромагнитного излучения видимой части спектра. 1ил.

 

Изобретение относится к устройствам, преобразующим энергию ядерного распада в электрическую энергию, и может быть использовано в производстве компактных источников электрического тока длительного пользования.

Известен источник тока - ядерная батарея, содержащий делящееся вещество, анод, катод и промежуточную среду с полупроводниковым р-n переходом (Ядерная батарея. Большая Советская Энциклопедия (В 30 томах)/ Гл. ред. А.М.Прохоров. Изд. 3-е. М., Сов. энциклопедия, 1977. Т 30, стр.433).

В таком источнике тока используется только один вариант преобразования энергии ядерного распада в электрическую энергию - путем непосредственного воздействия излучения на полупроводниковый р-n переход, при этом большая часть энергии ядерного распада не попадает в полупроводниковый р-n переход, а тратится на нагрев источника. Кроме того, полупроводниковые р-n переходы обладают малой поглощательной способностью на сверхвысоких частотах. Поэтому такой источник тока обладает низким значением выработки электрического тока.

Известен источник тока, применяемый в сцинтилляционном счетчике, содержащий сцинтиллятор, катод и анод фотоэлектронного умножителя (Сцинтилляторы. Сцинтилляционный счетчик. Сцинтилляция. Большая Советская Энциклопедия (В 30 томах)/ Гл. ред. А.М.Прохоров. Изд. 3-е. М., Сов. энциклопедия, 1977. Т 25, стр.128-129).

В таком источнике тока также используется только один вариант преобразования энергии ядерного распада в электрическую энергию, т.е. с промежуточным превращением энергии ядерного распада в энергию электромагнитного излучения видимой части спектра за счет явления сцинтилляции и последующим преобразованием световой энергии в электрический ток.

Однако, поскольку при сцинтилляции световой поток, производимый сцинтиллятором под действием радиоактивного излучения, распространяется одновременно во все стороны, а сцинтиллятор располагается вне фотоэлемента, только часть светового потока, испускаемого сцинтиллятором, улавливается катодом фотоэлектронного умножителя. Кроме этого, с увеличением расстояния от сцинтиллятора до катода энергия светового электромагнитного излучения значительно уменьшается. В связи с этим выработка электрического тока таким источником тока мала и сигнал с катода фотоэлектронного умножителя требует дальнейшего усиления.

Наиболее близким к изобретению, по технической сути прототипом, является источник тока - гетерогенный фотоэлемент (Патент RU 2217845 C1), содержащий анод и катод с расположенными между ними прозрачным электропроводящим слоем и прозрачным слоем из полупроводникового полимера n-типа с полупроводниковыми нанокристаллами р-типа и металлическими наночастицами.

В таком гетерогенном источнике тока также используется только один вариант преобразования энергии электромагнитного излучения в электрическую энергию. Однако следует отметить, что кпд такого источника тока достигает 60-70% в максимуме на резонансной частоте электромагнитного излучения, но для выработки им электроэнергии необходимо подавать на него электромагнитное излучение извне.

Задачей изобретения является обеспечение многовариантности преобразования гетерогенным источником тока энергии ядерного распада в электрическую энергию, в том числе путем промежуточного преобразования энергии распада делящегося вещества в энергию электромагнитного излучения видимой части спектра с последующим ее усилением и поглощением в р-n переходе при использовании практически всего светового потока, испускаемого сцинтилляторами под действием продуктов ядерного деления, и минимизации потерь световой энергии за счет расположения сцинтилляторов в непосредственной близости к р-n переходу; путем отклонения части заряженных частиц магнитным полем с последующим осаждением их на анод и катод; путем непосредственного воздействия электромагнитных излучений на полупроводниковый р-n переход, а также путем преобразования части нейтронного излучения во вторичное электромагнитное излучение и дальнейшее превращение его в электрический ток перечисленными путями.

Техническим результатом изобретения является повышение выработки гетерогенным источником тока электрической энергии при сохранении его габаритов и массы.

Технический результат достигается тем, что в известном гетерогенном источнике тока, содержащем анод и катод с расположенными между ними прозрачным электропроводящим слоем и прозрачным слоем из полупроводникового полимера n-типа с полупроводниковыми нанокристаллами р-типа и металлическими наночастицами, а также сцинтилляторы и делящееся вещество, в отличие от прототипа, в нем поверхности анода и катода, обращенные внутрь источника тока, снабжены серебряными зеркальными покрытиями, а анод и катод выполнены в виде пластин из магнитопроницаемого материала, причем анод контактирует с южными полюсами первых постоянных магнитных элементов из одной и более пар, а катод контактирует с северными полюсами вторых постоянных магнитных элементов из одной и более пар, при этом в прозрачный электропроводящий слой введены микрокапсулы из прозрачного диэлектрика в количестве n, определяемом выражением;

1≤n≤(Vэс/r3)·10-2,

где Vэс - объем прозрачного электропроводящего слоя источника;

r - характерный размер введенных в прозрачный электропроводящий слой микрокапсул из прозрачного диэлектрического материала, а микрочастицы смеси сцинтилляторов и делящегося вещества помещены в микрокапсулы из прозрачного диэлектрика.

В таком гетерогенном источнике тока энергия распада делящегося вещества преобразуется в энергию электрического тока в основном тремя путями:

1) путем промежуточного преобразования энергии испускаемых заряженных частиц и продуктов деления в энергию электромагнитного излучения видимой части спектра за счет явления сцинтилляции, с последующим усилением ее за счет явления плазменного резонанса металлических наночастиц вблизи спектра поглощения нанокристаллов р-типа (см. прототип) и дальнейшего превращения ее в энергию электрического тока на р-n переходе. При этом за счет отражательной способности серебряных зеркальных покрытий анода и катода, а также малой толщины самого гетерогенного источника тока (тонкопленочная конструкция) используется практически все световое излучение, испускаемое сцинтилляторами в микрокапсулах из прозрачного диэлектрика под действием ядерных излучений и продуктов распада, при этом сцинтилляторы с делящимся веществом располагаются в непосредственной близости к р-n переходу, за счет чего энергия производимого ими электромагнитного излучения практически не ослабляется;

2) путем отклонения части заряженных частиц магнитным полем, создаваемым парами постоянных магнитных элементов, с последующим осаждением заряженных частицих на анод и катод;

3) путем непосредственного воздействия радиоактивного излучения на полупроводниковый р-n переход.

Кроме того, воздействие части получаемых в процессе распада делящегося вещества нейтронов, преодолевших стенки микрокапсул из прозрачного диэлектрика, на серебряные покрытия анода и катода, а также на металлические наночастицы (в случае выполнения их из серебра) приводит к активации атомов серебра и испусканию ими вторичного излучения, которое преобразуется в электрический ток перечисленными путями.

В результате этого выработка электрического тока гетерогенным источником повышается. Поскольку введение микрокапсул осуществляется в уже существующий в источнике слой и при этом их концентрация не превышает 1%, то габариты и масса заявляемого источника практически не возрастают.

Совокупность всех указанных существенных признаков гетерогенного источника тока позволяет ему увеличить выработку электрического тока за счет многовариантности преобразования энергии ядерного распада в электрическую энергию, использования практически всего светового излучения сцинтилляторов, сокращения потерь энергии светового электромагнитного излучения из-за расположения сцинтилляторов в непосредственной близости к р-n переходу, а также преобразования части производимого нейтронного излучения в электромагнитное излучение с дальнейшим преобразованием его в электрический ток при сохранении габаритов и массы источника.

Так как заявленная совокупность существенных признаков позволяет решить поставленную задачу, то заявленный гетерогенный источник тока соответствуют критерию "изобретательский уровень".

Осуществление заявленного технического решения поясняется с помощью конструкционной схемы, представляющей гетерогенный источник тока в разрезе.

Гетерогенный источник тока содержит катод 1, прозрачный слой из полупроводникового полимера n-типа 2 с полупроводниковыми нанокристаллами р-типа 3 и металлическими наночастицами 4, а также прозрачный электропроводящий слой 5, расположенные между катодом 1 и анодом 6. Поверхности катода 1 и анода 6, обращенные внутрь источника тока, снабжены серебряными зеркальными покрытиями 7, а катод 1 и анод 6 выполнены в виде пластин из магнитопроницаемого материала, причем анод 6 контактирует с южными полюсами первых постоянных магнитных элементов 11 из одной и более пар, а катод 1 контактирует с северными полюсами вторых постоянных магнитных элементов 12 из одной и более пар. В прозрачный электропроводящий слой 5 источника тока введены микрокапсулы из прозрачного диэлектрика 8, в которые помещены микрочастицы смеси сцинтилляторов 9 и микрочастицы делящегося вещества 10.

Выбор серебра в качестве материала зеркального покрытия 7 катода 1 и анода 6 диктуется необходимостью обеспечения не только максимальной отражательной способности в области видимой части спектра электромагнитного излучения для его концентрации на р-n переходе, но и одновременного обеспечения максимально надежного электрического контакта между анодом 6 и прозрачным электропроводящим слоем 5, а также между катодом 1 и полупроводниковым полимером 2, к тому же серебро является веществом, способным активироваться нейтронами и испускать вторичное электромагнитное излучение. Выполнение катода 1 и анода 6 из магнитопроницаемого материала необходимо для обеспечения возможности создания магнитного поля между ними при контакте с постоянными магнитными элементами 11 и 12.

Выполнение микрокапсул 8 из прозрачного диэлектрика (например, стекла) диктуется необходимостью защиты микрочастиц сцинтилляторов 9 от преждевременного разряда под действием протекающего в прозрачном электропроводящем слое электрического тока, защиты самого слоя от разрушения продуктами деления и обеспечения свободного пропускания электромагнитного излучения видимой части спектра во все стороны. Помещаемые в микрокапсулы 8 из прозрачного диэлектрика сцинтилляторы 9 представляют собой смесь кристаллофосфоров, активируемых α, β, γ и нейтронным излучениями.

Соотношение масс микрочастиц сцинтилляторов 9 и делящегося вещества 10 для получения непрерывно светящегося состава известно и приведено, например, в издании «Курс общей физики. Часть III. Оптика. Физика атома и атомного ядра». Киев, Эдельвейс. Днiпро, 1994. Стр.254.

Принцип работы заявляемого гетерогенного источника тока состоит в следующем.

При распаде делящегося вещества 10 образуются заряженные α и β частицы, а также γ-излучение и нейтроны. Под действием большей части α, β и γ излучений, а также нейтронов, помещенные в микрокапсулы из прозрачного диэлектрика 8 микрочастицы сцинтилляторов 9 испускают электромагнитное излучение видимой части спектра, которое благодаря прозрачности кристаллов сцинтилляторов 9 и прозрачности стенок микрокапсул из прозрачного диэлектрика 8 одновременно распространяется во все стороны. При этом из-за малой толщины источника тока и непосредственной близости расположения сцинтилляторов с делящимся веществом к р-n переходу практически все электромагнитное излучение видимой части спектра из микрокапсул 8 без ослабления или непосредственно, или отражаясь от серебряного зеркального покрытия 7 катода 1 или анода 6 попадает в слой прозрачного полупроводникового полимера n-типа 2, содержащего полупроводниковые нанокристаллы р-типа 3, и частично поглощается в полупроводниковых нанокристаллах р-типа 3, ширина запрещенной зоны которых меньше энергии фотонов электромагнитного излучения. При указанном поглощении электроны из валентной зоны указанных нанокристаллов р-типа 3 переходят в зону проводимости. При этом концентрация свободных электронов в нанокристаллах р-типа 3 повышается и они диффундируют в указанный полупроводниковый полимер n-типа 2. Таким образом, концентрация свободных электронов в области анода 6 увеличивается по сравнению с областью около катода 1, что приводит к возникновению тока электронов от анода 6 к катоду 1 и далее во внешнюю цепь, если она замкнута. При этом если указанные металлические наночастицы 4 выбраны так, что частота их плазменного резонанса находится вблизи максимума спектра поглощения указанных нанокристаллов р-типа 3, то диэлектрическая проницаемость среды слоя прозрачного полупроводникового полимера n-типа 2, содержащего полупроводниковые нанокристаллы р-типа 3, на частоте воздействующего на них электромагнитного излучения существенно возрастает, что в свою очередь приводит к существенному возрастанию эффективности генерации электронов и их тока. Магнитное поле, создаваемое постоянными магнитными элементами 11 и 12 и передаваемое в анод 6 и катод 1 за счет их магнитопроницаемости, способствует отклонению части α и β частиц, вырвавшихся из микрокапсул 8, и их раздельному осаждению на аноде 6 (β частицы) и катоде 1 (α частицы), в результате чего между ними возникает дополнительная электродвижущая сила (ЭДС). Другая часть радиоактивного излучения, также преодолевшая стенки микрокапсул из прозрачного диэлектрика 8, воздействует непосредственно на полупроводниковый р-n переход, образуемый прозрачным полупроводниковым полимером n-типа 2 и содержащимися в нем полупроводниковыми нанокристаллами р-типа 3, в результате чего между анодом 6 и катодом 1 возникает еще одна дополнительная ЭДС. Кроме этого, воздействие получаемых в процессе распада микрочастиц делящегося вещества нейтронов и преодолевших стенки микрокапсул из прозрачного диэлектрика 8 на серебряные зеркальные покрытия 7 анода 6 и катода 1, а также металлические наночастицы 4 (в случае выполнения их из серебра), приводит к активации составляющих их атомов серебра и излучению ими вторичного электромагнитного излучения, которое преобразуется в электрический ток перечисленными путями (т.е. вторичным воздействием на микрочастицы сцинтилляторов в прозрачных диэлектрических капсулах 8, непосредственным воздействием на полупроводниковый р-n переход и отклонением и осаждением заряженных частиц на катод 1 и анод 6), что также повышает в конечном итоге выработку гетерогенным источником тока электрической энергии. Эффект наступает при наличии хотя бы одной микрокапсулы 8 из прозрачного диэлектрика с помещенными в нее микрочастицами сцинтилляторов 9, активированных делящимся веществом 10, т.е.

С другой стороны, помещенные в выделенный слой микрокапсулы 8 не должны оказывать заметного влияния на проводимость данного слоя, чтобы не создавать излишнего дополнительного внутреннего сопротивления текущим электронам, а также практически не уменьшать оптическую прозрачность слоя.

Для этого должно соблюдаться условие - объем выделенного для введения микрокапсул слоя должен быть много больше суммарного объема помещаемых в него диэлектрических микрокапсул 8:

где Vэс - объем выделенного для введения микрокапсул слоя;

Vмк - суммарный объем введенных в выделенный слой микрокапсул 8 из прозрачного диэлектрического материала с помещенными в них микрочастицами смеси сцинтилляторов 9 и делящегося вещества 10, т.е. Vэс должен быть по крайней мере на два порядка больше Vмк:

откуда, полагая что

где r - характерный размер введенных микрокапсул, n - число микрокапсул, тогда максимальное число введенных в выделенный слой микрокапсул 8, будет определяться как:

где n - число введенных в выделенный слой микрокапсул.

Окончательно, допустимое число введенных в выделенный слой микрокапсул должно удовлетворять соотношению, получаемому из (1) и (5):

При изготовлении микрокапсул необходимо стремиться к минимизации их характерного размера для обеспечения наибольшей светящейся площади, что возможно с применением выращивания методами нанотехнологий.

Так как период полураспада делящихся веществ колеблется от долей секунд до нескольких тысяч, а то и миллионов лет, выбор определенного типа делящегося вещества, а также соответствующих сцинтилляторов для применения в таком гетерогенном источнике тока является предметом оптимизации под конкретное техническое задание.

Таким образом, за счет использования практически всего светового потока, излучаемого сцинтилляторами, и обеспечения многовариантности преобразования энергии ядерного распада в электрическую энергию у заявляемого гетерогенного источника тока увеличивается выработка электрической энергии при сохранении его габаритов и массы, что позволяет создавать на его основе компактные батареи, способные длительное время вырабатывать электрическую энергию.

Гетерогенный источник тока, содержащий анод и катод с расположенными между ними прозрачным электропроводящим слоем и прозрачным слоем из полупроводникового полимера n-типа с полупроводниковыми нанокристаллами р-типа и металлическими наночастицами, а также сцинтилляторы и делящееся вещество, отличающийся тем, что в нем поверхности анода и катода, обращенные внутрь источника тока, снабжены серебряными зеркальными покрытиями, а анод и катод выполнены в виде пластин из магнитопроницаемого материала, причем анод контактирует с южными полюсами первых постоянных магнитных элементов из одной и более пар, а катод контактирует с северными полюсами вторых постоянных магнитных элементов из одной и более пар, при этом в прозрачный электропроводящий слой введены микрокапсулы из прозрачного диэлектрика в количестве n, определямом выражением:
1≤n≤(Vэс/r3)·10-2,
где Vэс - объем прозрачного электропроводящего слоя источника;
r - характерный размер введенных в прозрачный электропроводящий слой микрокапсул из прозрачного диэлектрического материала, а микрочастицы смеси сцинтилляторов и делящегося вещества помещены в микрокапсулы из прозрачного диэлектрика.



 

Похожие патенты:

Изобретение относится к использованию локальной электрической станции-преобразователя энергии излучения радиоактивного вещества в электрическую. .

Изобретение относится к устройствам для получения электрической энергии от радиоактивных источников и может использоваться в энергетике. Подземный ядерно-энергетический комплекс содержит наклонные У-образно расположенные скважины. Скважины сходятся нижней частью в забое центральной скважины, где расположен центральный ствол и образовано искусственное хранилище, соединяющее все стволы между собой. Стволы всех скважин обсажены стальными трубами и противорадиационными экранами. В одном из стволов размещены жидкие радиоактивные отходы (ЖРО) или жидкое радиоактивное топливо. В стволах размещены матрицы, представляющие собой устройства для получения электроэнергии от взаимодействия ЖРО с облучаемым электронно-дырочным переходом, образованным полупроводниковыми материалами в матрицах. С матриц электрический ток снимается через трансформатор и далее накапливается на накопителе (ионисторе или батареях). Технический результат - повышение эффективности использования ядерных отходов при уменьшении площади энергетического комплекса, упрощение конструкции комплекса. 3 ил.

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение. В заявленном способе предусмотрено использование диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза. Источник альфа-излучения испускает альфа-частицы, которые в диссоциирующем газе превращаются в ультрафиолетовое излучение. На пути ультрафиолетового излучения располагается синтетический полупроводниковый алмаз р-типа с контактом Шоттки и омическим контактом так, чтобы ультрафиолетовое излучение полностью или частично попадало на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза. При этом электрический ток снимается с контактов при помощи проводников и передается потребителю. Техническим результатом изобретения является исключение сложной, многостадийной схемы изготовления полупроводниковой структуры с возможностью использования только низкоэнергетических бета-источников, повышение электрофизических характеристик (радиационная стойкость, напряжение пробоя, подвижность электронов и дырок, теплопроводность) при преобразовании энергии ионизирующего излучения различных видов (альфа-излучение, бета-излучение, ультрафиолетовое излучение) в широком диапазоне энергий в электрическую энергию. 4 з. п. ф-лы, 1 табл., 1 ил.

Изобретение может быть использовано в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы. Способ преобразования энергии ионизирующего излучения в электрическую энергию включает изготовление полупроводникового материала, состоящего из областей с р- и n-типами проводимости в области р-n перехода, нанесение на поверхность полупроводникового материала в разных его областях слоев различных металлов, присоединение к ним проводников и воздействие на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза ионизирующим излучением с одновременным снятием электричества с помощью проводников, при этом в качестве ионизирующего излучения используют высокоэнергетические источники альфа-излучения мощностью не менее 0,567 Вт/г, а в качестве полупроводникового материала изготавливают синтетический алмаз р-типа с содержанием бора 1014-1016 атомов на см3 и на его поверхностях в разных областях с р- и n-типами проводимости в вакууме наносят неразрывные металлические контакты, один из которых трехслойная система металлизации вида титан-платина-золото для съема положительного заряда и другой с потенциальным барьером Шоттки - из платины, золота или иридия для снятия отрицательного заряда, на который воздействуют ионизирующим излучением, в результате чего внутри алмаза создают область пространственных зарядов, последние в электрическом поле разлетаются на отрицательные заряды, собираемые на металле контакта Шоттки, и положительные, собираемые на контакте из титана-платины-золота, и с них снимают электричество. Техническим результатом изобретения является создание способа преобразования ионизирующего излучения в электрическую энергию, обладающего более простой схемой изготовления полупроводниковой структуры, более высокой радиационной стойкостью, а также более высоким сроком службы полупроводникового материала. 2 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к области преобразователей энергии оптических и радиационных излучений бета-источников в электрическую энергию. Создание оригинальной планарной конструкции высоковольтного преобразователя реализуется по стандартной микроэлектронной технологии. Особенностью такой конструкции является размещение нескольких элементов p-i-n-структур, изолированных друг от друга микроканалами и соединенных последовательно, причем каждая структура собирает излучение р-n-переходов на обеих сторонах кремниевой пластины как от светового источника, так и от бета-источника. Такой преобразователь может быть использован в труднодоступных местах, шахтах, для питания биосенсоров, внедряемых внутрь организма, и т.д., а также для зарядки микроаккумуляторов на основе химических источников тока с твердотельным электролитом. Планарный фото- и бета-вольтаический преобразователь согласно изобретению обеспечивает высокое значение выходного напряжения ЭДС. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области преобразователей энергии оптических и радиационных излучений - бетаисточников в электрическую энергию. Изобретение обеспечивает создание двухсторонней конструкции комбинированного накопительного элемента фото- и бетавольтаики, состоящей из совмещенных на одной пластине кремния с одной стороны - фотоэлемента и подключенного параллельно к нему планарного плоского конденсатора, с другой стороны - бетавольтаического элемента, бета-источник никель-63 которого помещается в микроканалы для увеличения КПД и тока генерации. Такой преобразователь может быть использован в труднодоступных местах, шахтах, для питания биосенсоров, внедряемых внутрь организма, и т.д. 2 н.п. ф-лы, 3 ил.

Бета-вольтаический полупроводниковый генератор электроэнергии, содержащий полупроводниковую пластину с развитой поверхностью и слой никеля-63 на этой поверхности. Поверхность пластины полупроводника выполнена в виде множества микропор и «колодцев», имеющих разную форму, при этом слой никеля покрывает стенки микропор и общей поверхности до 95-99%. Поверхность полупроводника содержит микропоры с размерами: ширина - 20÷40 нм, длина - 400÷600 нм; глубина - 100÷250 нм; количество пор до 2500-3000 на 1 см2. Способ изготовления бета-вольтаического генератора включает этап нанесения радиоактивного вещества в микропоры пластин полупроводника с развитой поверхностью, при этом напыляют слой металлического цинка, а затем помещают пластины в водный раствор хлорида никеля-63 на 8-60 часов при температуре 10-50°C и pH 4,5. Изобретение обеспечивает возможность создания бета-вольтаического генератора электроэнергии с повышенной энергоемкостью, сроком службы 50-70 лет, при минимальной трудоемкости, затраченной на изготовление изделия. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к полупроводниковой технике, в частности к созданию компактных источников электроэнергии с использованием радиоактивных изотопов и полупроводниковых преобразователей. Бета-вольтаический полупроводниковый генератор электроэнергии, содержащий пластину с развитой поверхностью, выполненной в виде множества микропор, имеющих разную форму. Никель-63 покрывает стенки микропор и остальную поверхность пластины с максимально высоким уровнем радиоактивности. Пластины полупроводника с текстурированной поверхностью, имеющего глухие микропоры и «колодцы», заполненные слоем металлического цинка, закрепляют на стальную пластину, обладающую магнитными свойствами, помещают в водный раствор хлорида никеля-63 на 8-10 часов при температуре 10-20°C и pH 4,5. Уровень радиоактивности на поверхности пластины при данном способе нанесения может достигать 10 mCu/см2. Изобретение обеспечивает возможность создания бета-вольтаического генератора электроэнергии с повышенной энергоемкостью, сроком службы 50-70 лет, при минимальной трудоемкости, затраченной на изготовление изделия. 2 н.п. ф-лы, 3 ил.

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги, который окружен, по меньшей мере, одним прилегающим к нему полупроводниковым преобразователем. Преобразователь выполнен в виде фольги из вентильного металла (например, Ni, Nb, Zr, V), на поверхности которой, обращенной к источнику излучения, сформирован слой полупроводникового оксида упомянутого вентильного металла, пропускающий электрический ток только в одном направлении, снабженный, по меньшей мере, одним электрическим контактом, нанесенным на этот слой. Способность слоя полупроводникового оксида вентильного металла пропускать ток только в одном направлении обеспечивается либо тем, что электрический контакт, нанесенный на этот слой, выполнен в виде сплошного металлического покрытия, образующего с упомянутым полупроводниковым оксидом барьер Шоттки, либо тем, что в упомянутом слое сформирована выпрямляющая гетероструктура. Техническим результатом является возможность оптимизации весогабаритных характеристик бета-вольтаического элемента. 3 з.п. ф-лы, 2 ил.

Изобретение относится к источникам питания на основе полупроводниковых преобразователей с использованием бета-вольтаического эффекта. Сущность: бета-вольтаическая батарея содержит корпус, крышку, полупроводниковые преобразователи, изолирующие и радиоизотопные элементы и токопроводящие контакты, конфигурируемые в один или несколько комплектов, соединяемых параллельно и (или) последовательно до достижения требуемой выходной мощности. Комплект собран из преобразователей, направленных разнополярными поверхностями друг к другу, между которыми размещены токопроводящие радиоизотопные элементы. Комплекты разделены изолирующими элементами, снабженными равномерно расположенными пазами. Противолежащие пазы снабжены токопроводящими контактами, выполненными с возможностью их электрического соединения как с токопроводящими контактами крайних преобразователей каждого комплекта, так и с регулятором. В качестве радиоизотопного элемента используется никель-63 с обогащением от 80%, нанесенный на n-слои полупроводниковых преобразователей. Технический результат: повышение удельной мощности батареи. 3 з.п. ф-лы, 5 ил.

Изобретение относится к технике безотходной ядерной технологии. Компактный бетавольтаический источник тока длительного пользования с бета-эмиттером, представляющий собой сборку «сэндвичевой» структуры в виде стопки чередующихся между собой единичных или комплектных микроисточников тока, где каждый из микроисточников тока содержит кремнийсодержащую n+ легированную пластинку с р+ эпитаксиальным слоем, и источник бета-частиц в виде содержащего радиоизотоп никеля-63 металлического электропроводного слоя, контактирующего с одной или с двух сторон с полупроводниковым преобразователем, и систему токосъемных электродов для подключения к нагрузке, при этом в качестве полупроводникового преобразователя энергии бета-частиц в электрическую энергию - матрицу монокристаллического р-кремния, а в качестве источника бета-частиц - соразмерную с пластинкой полупроводника токопроводящую металлическую пластинку, в качестве системы токосъемных электродов - комбинацию системы внутренних встроенных с обеих сторон кремниевой пластинки по всей площади поверх слоя нитрида кремния серебряных линейных электродов. Изобретение позволяет повысить генерируемую электрическую мощность, ток и напряжение бетавольтаического источника. 2 н. и 7 з.п. ф-лы, 8 ил.
Наверх