Способ термической обработки изделий из высокопрочных алюминиевых сплавов

Изобретение относится к области цветной металлургии, а именно к термической обработке полуфабрикатов и деталей из алюминиевых сплавов Al-Zn-Mg-Cu-Zr, используемых в качестве конструкционного материала для силовых элементов в авиакосмической технике, а также в транспортном машиностроении. Проводят закалку и искусственное трехступенчатое старение, при котором на первой ступени осуществляют низкотемпературный нагрев при температуре 110-125°С с выдержкой 1-12 час, на второй ступени - кратковременный нагрев при повышенной температуре 150-168°С с последующим регламентированным ускоренным охлаждением до температуры 30-40°С со скоростью не менее 0,5°С/мин, на третьей ступени выполняют низкотемпературный нагрев при температуре 70-90°С, обеспечивающий выделение дополнительных тонкодисперсных упрочняющих фаз из пересыщенного твердого раствора. Получают изделия, обладающие высокими прочностными свойствами и повышенным сопротивлением усталости при высоком уровне коррозионной стойкости, что обеспечивает увеличение весовой эффективности и ресурса изделий. 3 з.п. ф-лы, 2 табл.

 

Изобретение относится к области цветной металлургии, а именно к способу термической обработки полуфабрикатов и деталей из высокопрочных, особенно сверхпрочных, алюминиевых сплавов системы Al-Zn-Mg-Cu с добавкой Zr, используемых в качестве конструкционного материала для силовых элементов в авиакосмической технике, а также в транспортном машиностроении.

Известно, что высокая прочность этих сплавов достигается в результате закалки и искусственного зонного старения по низкотемпературным (~120°С) одноступенчатым режимам T1 (T6 за рубежом) вследствие образования равномерно распределенных внутри зерен, в основном выделений зон Гинье-Престона (ГП), а также формирования нерекристаллизованной (субзеренной) структуры благодаря добавке активного антирекристаллизатора Zr (патенты США №4863528, №4832758).

Недостатком сплавов после этой термообработки является то, что они имеют низкое сопротивление опасным видам коррозии - расслаивающей (РСК) и коррозионному растрескиванию под напряжением (КР), которое обусловлено в основном неблагоприятными (сплошными) пограничными выделениями частиц полностью некогерентной М и частично когерентной М'-фаз, а также недостаточное сопротивление усталости, что связано с малой пластичностью матричного раствора из-за упрочнения когерентными зонами ГП и наличием дислокации у границ зерен.

Для кардинального повышения стойкости к КР и РСК с целью повышения эксплуатационной надежности и ресурса конструкций, для высокопрочных сплавов широко применяются двух- (и даже трех-) ступенчатые режимы смягчающего старения Т2 и Т3 (Т76, Т73, Т74). Это происходит в результате интенсивной коагуляции и формирования крупных частиц некогерентной (стабильной) фазы М с дискретным расположением по границам зерен на второй высокотемпературной (160-180°С), продолжительной ступени старения (Цветные металлы и сплавы, Энциклопедия «Машиностроение», М., 2001, т.II-3, с.94-131; Aluminum Standards and Data, Aluminum Association, USA, 1998, p.3.15-3.17).

Однако одновременно в состояниях Т2 и Т3 по сравнению с состоянием Т1 снижаются на 7-15% прочностные характеристики. Также не улучшаются показатели усталости, а в состоянии Т3 (с большей степенью перестаривания) эти показатели несколько снижаются, что не позволяет в современных конструкциях полностью реализовать весовую эффективность от использования высокопрочных и особенно сверхпрочных сплавов с максимальной удельной прочностью.

Наиболее близким по техническому решению и назначению аналогом предлагаемого изобретения, взятым за прототип, является способ термической обработки изделий из высокопрочных сплавов на базе системы Al-Zn-Mg-Cu-Zr, состоящий из закалки и трехступенчатого искусственного старения.

Искусственное старение состоит из следующих стадий:

а) I ступень - нагрев при температуре 95-135°С, выдержка 2-12 час,

б) II ступень - нагрев при температуре 149-168°С, выдержка 4-18 час (предпочтительный режим: температура 156-163°С, выдержка 7-13 час),

в) III ступень - нагрев при температуре 95-135°С (предпочтительный режим: выдержка не менее 6 час при температуре 110-127°С)

(Патент США №20020121319).

Недостатком этого способа является то, что он предназначен для толстых полуфабрикатов (толщиной более 51 мм, преимущественно 76-305 мм). Но при закалке не достигается скорость охлаждения, необходимая для максимального пересыщения твердого раствора легирующими элементами и, соответственно, не обеспечивается максимальная прочность.

Ввиду относительно медленного нагрева и охлаждения массивных полуфабрикатов на разных ступенях старения ограничена возможность для регулирования скоростей нагрева и охлаждения и соответственно параметров структуры полуфабриката, а большая общая длительность процесса трехступенчатого старения повышает стоимость производства изделий.

Известный способ не предназначен для термической обработки основной номенклатуры применяемых в авиационной технике полуфабрикатов и деталей толщиной менее 50 мм (длинномерных плит, листов, прессованных профилей, панелей для обшивок, стрингеров и др.), которые требуют резкого охлаждения при закалке (в холодной воде с помощью спреера или погружением) для достижения максимального уровня прочности (σв>600 МПа) и сопротивления усталости.

Технической задачей настоящего изобретения является разработка режимов термической обработки изделий (катаных, прессованных и кованых), толщиной преимущественно до 50 мм, из высокопрочных, особенно сверхпрочных высоколегированных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, позволяющих получать стабильно высокие прочностные свойства и повышенное сопротивление усталости при высоком уровне коррозионной стойкости, что обеспечивает увеличение весовой эффективности и ресурса изделий.

Для решения данной задачи предложен способ термической обработки изделий из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, включающий закалку и искусственное трехступенчатое старение, при котором на первой ступени осуществляют низкотемпературный нагрев при температуре 110-125°С с выдержкой 1-12 час, на второй ступени - нагрев при повышенной температуре 150-168°С, отличающийся тем, что на второй ступени проводят кратковременный нагрев с последующим регламентированным ускоренным охлаждением до температуры 30-40°С со скоростью не менее 0,5°С/мин, на третьей ступени выполняют низкотемпературный нагрев при температуре 70-90°С, обеспечивающий выделение дополнительных тонкодисперсных упрочняющих фаз из пересыщенного твердого раствора.

При этом предпочтительно выполнять закалку с температуры (465-480°С) с быстрым охлаждением в холодной воде с температурой не более 30°С, на второй ступени осуществлять кратковременный нагрев с выдержкой 1-3 час, а на третьей ступени - с выдержкой 8-25 час.

Кратковременный нагрев (выдержка 1-3 час) на второй ступени искусственного старения при умеренно повышенных температурах 150-168°С имеет две цели:

- ограничение коагуляции и размеров метастабильных, частично когерентных выделений фазы М', образующихся на равномерно и плотно распределенных в матричном твердом растворе зонах ГП гомогенного зарождения в процессе низкотемпературной первой ступени старения, для получения основной доли (более 90%) высокой прочности;

- формирование относительно крупных частиц преимущественно стабильной фазы М с дискретным расположением и устранение дислокаций по границам зерен для обеспечения коррозионной стойкости к РСК и КР. При этом рекомендуется после второй ступени старения ускоренное регламентированное охлаждение изделий (при выдвижении пода печи с использованием вентилятора и т.п.) до температуры 30-40°С со скоростью не менее 0,5°С/мин для фиксирования определенного пересыщения твердого раствора и во избежание его распада для того, чтобы получить наибольший эффект от последующего старения на третьей ступени.

Низкотемпературный нагрев на третьей ступени старения при температуре 70-90°С необходим для дополнительного выделения из твердого раствора тонкодисперсных ("мелких") упрочняющих полукогерентных фаз М' в зерне, что приводит к дополнительному упрочнению изделий и достижению в предлагаемом способе уровня прочности, как правило, выше прочности в состоянии T1 (T6).

При закалке нагрев до максимально высокой температуры 465-480°С (которая зависит от типа и габаритов исходных полуфабрикатов, а также от особенностей печи) требуется для наиболее полного растворения избыточных фаз в твердом растворе, особенно в сильнолегированных многофазных сплавах, а последующее быстрое охлаждение в холодной воде с температурой не более 30°С позволяет избежать распад пересыщенного твердого алюминиевого раствора.

Повышенное сопротивление малоцикловой усталости обусловлено увеличением локальной пластичности матрицы сплавов системы Al-Zn-Mg-Cu-Zr в результате аннигиляции дислокаций, однородного и достаточно полного мелкодисперсного распада твердого раствора, сформированного при использовании предлагаемого трехступенчатого способа термической обработки.

Примеры осуществления

В условиях промышленного производства методом прокатки были изготовлены плиты толщиной 20-50 мм из сверхпрочного алюминиевого сплава следующих составов, % по массе: 8,0-8,4 Zn; 1,95-2,2 Mg; 1,5-1,8 Cu; 0,1-0,12 Zr; 0,10-0,11 Fe; 0,04-0,06 Si.

Использовались крупногабаритные плоские слитки, отлитые полунепрерывным методом из электрической печи.

В таблице 1 приведены режимы термической обработки (закалки и трехступенчатого старения) по предлагаемому способу и известному способу прототипа, а в таблице 2 представлены характеристики полуфабрикатов, полученных по предлагаемому и известному способам, где примеры 1-3 относятся к предлагаемому способу, а пример 4 - к известному способу прототипа.

Механические свойства при статическом растяжении определяли на цилиндрических образцах, вырезанных из центральной части сечения (s/2) и четверти сечения (s/4), где s - толщина полуфабриката. Диаметр рабочей части цилиндрических образцов составлял dотв=5 мм.

Малоцикловую усталость оценивали по долговечности образцов-полос с открытым отверстием диаметром dотв=5 мм (коэффициент концентрации напряжений Kt=2,6) при испытании на машинах типа MTS при частоте f=40 Гц и коэффициенте ассиметрии цикла R=0,1.

Тонкую структуру плит исследовали с помощью просвечивающих электронных микроскопов JEM 200CX и Tesia BS540.

Оценку коррозионной стойкости проводили прямыми испытаниями на РСК по 10-бальной системе в соответствии с ГОСТ9.904 плоских образцов размером 5×4×80 мм и по измерению удельной электропроводимости вихретоковым методом на поверхности образцов.

Как свидетельствуют данные в таблице 2, предложенный способ термической обработки позволяет получить оптимальную структуру изделий, характеризующуюся умеренным распадом твердого раствора с высокой дисперсностью и однородностью распределения упрочняющих метастабильных выделений М' в зерне, что позволяет обеспечить высокий уровень прочности и долговечности в условиях усталостных нагрузок. При этом сформированная структура пограничных выделений стабильной фазы М с дискретным расположением обеспечивает высокую коррозионную стойкость к РСК (4-6 баллов), аналогичную стойкости, получаемой по известному способу.

Предложенный способ термической обработки позволяет повысить весовую эффективность и ресурс изделий в результате достижения стабильно высоких прочностных характеристик, сочетающихся с повышенным уровнем сопротивления усталости и коррозионной стойкости.

Таблица 1.
Режимы термической обработки по предлагаемому способу и способу-прототипу
№ п/п Закалка Искусственное старение Толщина изделия, мм
Температура, °С * Охлаждение. Температура воды, °С I ступень II ступень III ступень
Температура, °С Выдержка, час Температура, °С Выдержка, час Скорость охлаждения, °С/мин Температура, °С Выдержка, час
1 480 25 125 1 168 1 1,0 80 15 20
2 465 18 110 2 160 2 0,6 90 8 40
3 472 30 110 12 150 3 0,5 70 25 50
4 472 30 120 2 160 10 - 120 10 52
* Методом погружения.

Таблица 2.
Характеристики полуфабрикатов, полученных по предлагаемому способу и способу-прототипу
Режим термообработки σB σ0,2 Размеры метастабильной фазы М' в зерне, нм Размер частиц стабильной фазы М по границам зерен, нм Удельная электропроводимость, МСм/м Малоцикловая усталость. Долговечность N, кциклы
МПа «крупных» «мелких» (M'+ГП)
1 629 609 14-17 5-7 40-60 20,8 507
2 640 620 12-15 4-6 40-50 20,6 605
3 634 613 9-12 3-5 30-40 20,4 410
4 580 540 20-25 7-10 70-80 21,3 255

1. Способ термической обработки изделий из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, включающий закалку и искусственное трехступенчатое старение, при котором на первой ступени осуществляют низкотемпературный нагрев при температуре 110-125°С с выдержкой 1-12 ч, на второй ступени - нагрев при повышенной температуре 150-168°С, отличающийся тем, что на второй ступени проводят кратковременный нагрев с последующим регламентированным ускоренным охлаждением до температуры 30-40°С со скоростью не менее 0,5°С/мин, а на третьей ступени выполняют низкотемпературный нагрев при температуре 70-90°С, обеспечивающий выделение дополнительных тонкодисперсных упрочняющих фаз из пересыщенного твердого раствора.

2. Способ по п.1, отличающийся тем, что закалку выполняют с максимально возможной температурой 465-480°С и с быстрым охлаждением в холодной воде с температурой не более 30°С.

3. Способ по п.1, отличающийся тем, что кратковременный нагрев на второй ступени старения осуществляют с выдержкой 1-3 ч.

4. Способ по п.1, отличающийся тем, что третью ступень старения выполняют с выдержкой 8-25 ч.



 

Похожие патенты:

Изобретение относится к деформируемому алюминиевому сплаву типа Al-Zn-Mg-Cu (или к алюминиевым сплавам серий 7000 или 7ххх, как их обозначает Алюминиевая Ассоциация). .

Изобретение относится к толстостенной плите из алюминиевого сплава с высокой прочностью и малой чувствительностью к быстрому охлаждению, а также к способу изготовления таких толстостенных плит и может быть использовано в автомобилестроении.

Изобретение относится к алюминиевым сплавам, а именно к изготовлению продуктов с большим и малым поперечным сечением. .

Изобретение относится к сплавам типа Al-Zn-Mg, а именно к сплавам, предназначенным для сварных конструкций, таких как конструкции, используемые в области морского строительства, при изготовлении кузовов автомобилей, промышленных транспортных средств и неподвижных или подвижных резервуаров.
Изобретение относится к технологии упрочняющей обработки алюминиевых сплавов, а именно к методам деформационно-термической обработки. .

Изобретение относится к области металлургии алюминиевых сплавов, а именно к способу получения сверхпластичных листов из высокопрочных и особопрочных сплавов системы Al-Zn-Mg-Cu-Zr, используемых в качестве конструкционного материала для листовых элементов планера самолетов, ракетной техники, а также в приборостроении и наземном транспорте.

Изобретение относится к области металлургии алюминиевых сплавов, а именно к способу термической обработки длинномерных полуфабрикатов из высокопрочных и особо прочных термически упрочняемых сплавов системы Al-Zn-Mg-Cu особенно с добавкой циркония, используемых в качестве конструкционного материала для основных силовых элементов планера самолетов, ракетной техники, а также в транспортном и приборном машиностроении.
Изобретение относится к металлургии и может быть использовано при получении пенометаллов. .

Изобретение относится к области металлургии материалов на основе алюминия, к способам изготовления изделий из таких материалов и может быть использовано в рекреационных изделиях, в различных транспортных средствах и их конструкциях, а также в качестве присадочного материала для сварки изделий из материалов на основе алюминия.

Изобретение относится к области металлургии и машиностроения, а именно к способу получения изделий из высокопрочных, особенно сверхпрочных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, применяемых в качестве обшивок крыла и других силовых элементов планера самолетов, а также наземных транспортных средств
Изобретение относится к деформированному продукту из высокопрочного, высоковязкого Al-Zn сплава и к способу изготовления такого продукта

Изобретение относится к продукту из свариваемого деформируемого алюминиевого сплава и способу его получения

Изобретение относится к сплавам на основе алюминия, а именно к Аl-Zn-Cu-Mg сплавам на основе алюминия, а также способу изготовления катаного или кованого деформированного продукта из него и к самому катаному или кованому деформированному продукту
Изобретение относится к сплаву серии АА7000 и к способу изготовления продуктов из этого алюминиевого сплава, а именно к алюминиевым деформированным продуктам относительно большой толщины, в частности от 30 до 300 мм
Изобретение относится к способу изготовления слоистой плиты на основе алюминия для противопульной сварной брони

Изобретение относится к алюминиевоцинкомагниевым сплавам и к продуктам, выполненным из таких сплавов, которые могут быть использованы для изготовления литейных форм для производимых литьем под давлением пластмасс
Изобретение относится к алюминиевым сплавам, в частности к тем, из которых получают высокопрочный алюминиевый полуфабрикат, а также к способу получения таких алюминиевых полуфабрикатов

Изобретение относится к области металлургии сплавов на основе алюминия, в частности сплавов систем Al-Mg-Si и Al-Zn-Mg, используемых в качестве конструкционных и обшивочных листов в авиакосмической технике, судостроении и транспортном машиностроении, в том числе и в сварных конструкциях

Изобретение относится к области металлургии, в частности к способам производства труб из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, легированных скандием и цирконием
Наверх