Способ сборки запаянных нейтронных трубок

Изобретение относится к области ядерной техники, в частности к нейтронным генераторам, и может быть использовано в ряде приложений, например в нейтронных трубках, для каротажных исследований. Способ сборки запаянных нейтронных трубок включает изготовление трубчатого высоковольтного изолятора и металлических манжет, герметичное крепление манжет на концах трубчатого высоковольтного изолятора, временную установку источника ионов на одной манжете, а ускоряющего электрода на другой манжете, центририрование источника ионов относительно ускоряющего электрода, жесткое крепление источника ионов и ускоряющего электродов на манжетах и герметизацию трубки по краям манжет. Торцы трубчатого высоковольтного изолятора шлифуют до их плоскопараллельного положения, перпендикулярного оси трубчатого высоковольтного изолятора. Внутренний диаметр высоковольтного изолятора протачивают с обоих торцов. Источник ионов и ускоряющий электрод закрепляют на центральных частях воротниковых фланцев. Фланцы центрируют в проточках. Изобретение позволяет уменьшить относительное смещение источника ионов и ускоряющего электрода, уменьшить отклонения пучка от оси, увеличить выход нейтронов. 7 ил.

 

Изобретение относится к области ядерной техники, в частности к нейтронным генераторам, и может быть использовано в ряде приложений, например в нейтронных трубках, для каротажных исследований.

Известен способ изготовления газонаполненной нейтронной трубки, предусматривающий бомбардирование нейтронно-образующей мишени ионами дейтерия и дополнительно бомбардирование ионами более тяжелого газа, например аргона, ксенона, одновременно или попеременно с бомбардированием ионами дейтерия. Патент Российской Федерации №2052849, МПК: G21G 4/02, 1996 г.

Известен способ изготовления мишени нейтронной трубки. Способ включает в себя напыление титановой пленки на мишень внутри газонаполненной нейтронной трубки. Напыление производится на металлической основе мишени, которая нагрета до 500-650°С. Обеспечивается повышение термостойкости мишени. Патент Российской Федерации №2222064, МПК: G21G 4/02, 2004 г.

Известен способ сборки запаянной нейтронной трубки, включающий изготовление трубчатого высоковольтного изолятора и металлических манжет, герметичное крепление манжет на концах трубчатого высоковольтного изолятора, временная установка источника ионов на одной манжете, а ускоряющего электрода на другой манжете, центририрование источника ионов относительно ускоряющего электрода, жесткое крепление источника ионов и ускоряющего электродов на манжетах, герметизацию трубки по краям манжет. Прототип. Патент США №4996017, МПК: G21B 1/02, 1991.

При сборке и аналогов и прототипа существует типичная последовательность сборки запаянных нейтронных трубок: изготовление трубчатого высоковольтного изолятора и (металлических) манжет; герметичное закрепление манжет на концах трубчатого высоковольтного изолятора (если изолятор керамический, то это обычно пайка, а если стеклянный, то сварка); временное закрепление источника ионов на одной манжете, а ускоряющего электрода на другой манжете; центририрование источника ионов относительно ускоряющего электрода с помощью центрирующего стержня и жесткое закрепление источника ионов и ускоряющего электродов на манжетах (сварка источника и электрода с манжетами). После такой жесткой фиксации источника ионов и ускоряющего электрода на манжетах, центрирующий стержень извлекают из трубки; герметизация трубки по краям манжет.

Недостатком известных способов сборки нейтронной трубки является низкая эффективность и низкая величина выхода нейтронов из-за отклонения пучка ионов от оси и попадания части пучка на электроды из-за относительного смещения источника ионов и ускоряющего электрода друг относительно друга.

Источник и ускоряющий электрод смещаются из-за деформации манжет трубки в процессе изготовления и эксплуатации. Манжеты деформируются в процессе герметичного соединения манжет с изолятором, например в процессе пайки, при сварке элементов трубки, в процессе вакуумного отжига трубки, в процессе насыщения трубки дейтерием и тритием и в процессе эксплуатации трубки из-за нагревания ее элементов. При этом деформация манжет и смещение жестко прикрепленных к ним источника ионов и ускоряющего электрода являются следствием различия в коэффициентах линейного расширения материала, из которых изготовлены манжеты, и материала трубчатого изолятора и характерны для любых конструкций трубок. После извлечения центрирующего стержня, под действием механических напряжений в манжетах и электродах, происходит смещение источника ионов относительно ускоряющего электрода.

После сборки трубки осуществляют ее отжиг. На этапе отжига также происходит неконтролируемое смещение электродов. Таким образом, после сборки всей конструкции получаем трубку со смещенными относительно друг друга источником ионов и ускоряющим электродом. При работе трубки в результате перегрева отдельных ее узлов, в первую очередь источника ионов, происходит дополнительное смещение электродов.

Данное изобретение устраняет недостатки аналогов и прототипа.

Техническим результатом изобретения является уменьшение относительного смещения источника ионов и ускоряющего электрода, уменьшение отклонения пучка от оси, увеличение выхода нейтронов.

Технический результат достигается тем, что в способе сборки запаянных нейтронных трубок, включающем изготовление трубчатого высоковольтного изолятора и металлических манжет, герметичное крепление манжет на концах трубчатого высоковольтного изолятора, временную установку источника ионов на одной манжете, а ускоряющего электрода на другой манжете, центририрование источника ионов относительно ускоряющего электрода, жесткое крепление источника ионов и ускоряющего электродов на манжетах, герметизацию трубки по краям манжет, торцы трубчатого высоковольтного изолятора шлифуют до их плоскопараллельного положения, перпендикулярного оси трубчатого высоковольтного изолятора, протачивают внутренний диаметр высоковольтного изолятора с обоих торцов, закрепляют источник ионов и ускоряющий электрод на центральных частях воротниковых фланцев, которые и центрируют в проточках.

Сущность изобретения поясняется на фиг.1-7.

На фиг.1 представлен первый этап - изготовление изолятора и металлических манжет, 1 - трубчатый высоковольтный изолятор, 2 - манжеты.

На фиг.2 представлен этап механической обработки трубчатого высоковольтного изолятора: плоскопараллельная шлифовка торцов и проточка внутреннего диаметра (допускается сквозная проточка), где 3 - торцы трубчатого изолятора, 4 - аксиальные проточки у торцов трубчатого изолятора 1.

На фиг.3 представлен этап крепления манжет 2.

На фиг.4 представлен этап ввода источника ионов и ускоряющего электрода в трубчатый изолятор с противоположных торцов, где 5 - источник ионов дейтерия, 6 - ускоряющий электрод.

На фиг.5 представлен этап установки источника ионов 5 и ускоряющего электрода 6 на торцах трубчатого высоковольтного изолятора 1 и центрирования в аксиальных проточках 4 воротниковых фланцев источника ионов дейтерия 5 и ускоряющего электрода, где 7 - центральная часть фланца, 8 - воротниковая часть фланца, 9 - тритиевая мишень, 10 - прижимное кольцо.

На фиг.6 представлен этап установки воротниковых фланцев с источником ионов дейтерия и с ускоряющим электродом, где 7 - центральная часть фланца, 8 - воротниковая часть фланца, 9 - тритиевая мишень, 10 - прижимное кольцо, 11 - проходной изолятор. Воротниковые части фланцев 8 зафиксированы в аксиальных проточках 4 трубчатого высоковольтного изолятора 1 и прижаты к его торцам 3 прижимными кольцами 10.

На фиг.7 представлен конечный вид запаянной нейтронной трубки, где 12 - крышка мишени, 13 - крышка источника ионов дейтерия.

Манжеты 2 герметично закрепляют (пайка) на торцах изолятора. При этом из-за различия в коэффициентах линейного расширения и металла, и диэлектрика происходит деформация манжет 2.

Плоскопараллельность оснований источника ионов дейтерия 5 и ускоряющего электрода 6 обеспечена тем, что воротниковые части фланцев 8 прижаты к торцам 3 трубчатого высоковольтного изолятора 1, расстояние между источником ионов дейтерия 5 и ускоряющим электродом 6 обеспечено неизменным расстоянием между торцами 3, к которым они прижаты. Соосность источника ионов дейтерия 5 и ускоряющего электрода 6 обеспечена соосностью аксиальных проточек 4, в которые плотно (в натяг) входят центральные части 7 воротниковых фланцев источника ионов дейтерия 5 и ускоряющего электрода 6.

Крышка мишени 12 (справа) и крышка источника 13 (слева) герметично соединяют с манжетами 2. Пружинные прижимные кольца 10 все время прижимают источник ионов дейтерия 5 и ускоряющий электрод 6 к шлифованным торцам 3 трубчатого высоковольтного изолятора 1, не позволяя им сдвинуться из аксиальных проточек 4. Благодаря этому достигается постоянное центрирование источника ионов дейтерия 5 относительно ускоряющего электрода 6.

Способ сборки запаянных нейтронных трубок, включающий изготовление трубчатого высоковольтного изолятора и металлических манжет, герметичное крепление манжет на концах трубчатого высоковольтного изолятора, временную установку источника ионов на одной манжете, а ускоряющего электрода на другой манжете, центрирование источника ионов относительно ускоряющего электрода, жесткое крепление источника ионов и ускоряющего электрода на манжетах, герметизацию трубки по краям манжет, отличающийся тем, что торцы трубчатого высоковольтного изолятора шлифуют до их плоскопараллельного положения, перпендикулярного оси трубчатого высоковольтного изолятора, протачивают внутренний диаметр высоковольтного изолятора с обоих торцов, закрепляют источник ионов и ускоряющий электрод на центральных частях воротниковых фланцев, которые и центрируют в проточках.



 

Похожие патенты:

Изобретение относится к устройствам импульсных излучателей-генераторов разовых или многоразовых импульсов нейтронного и рентгеновского излучения. .

Изобретение относится к генераторам разовых импульсов нейтронов и рентгеновского излучения и предназначено для проведения ядерно-физических исследований, изучения радиационной стойкости и генерирования нейтронных пучков.

Изобретение относится к устройствам для генерирования нейтронных пучков, в частности к генераторам разовых импульсов нейтронного и рентгеновского излучения. .

Изобретение относится к ядерной физике и медицине и может быть применено в источниках нейтронов, выполненных на основе ускорителей заряженных частиц. .

Изобретение относится к устройствам для генерации импульсных потоков быстрых нейтронов, в частности к малогабаритным отпаянным ускорительным трубкам, и может быть использовано в ускорительной технике или в геофизическом приборостроении, например, в импульсных генераторах нейтронов народно-хозяйственного назначения, предназначенных для исследования скважин методами импульсного нейтронного каротажа.

Изобретение относится к устройствам для генерирования нейтронных пучков. .

Изобретение относится к области ядерной техники, в частности к нейтронным генераторам, и может быть использовано, например в нейтронных трубках, для каротажных исследований.

Изобретение относится к нейтронной технике, в частности к устройствам для генерации потоков быстрых нейтронов, а именно к нейтронным генераторам. .

Изобретение относится к генераторам нейтронного пучка. .

Изобретение относится к генераторам нейтронов и может быть использовано в нейтронном каротаже, в нейтронном активационном анализе, в лучевой терапии

Изобретение относится к запаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для исследования геофизических и промысловых скважин

Изобретение относится к ускорительным трубкам для получения нейтронов при проведении неразрушающего элементного анализа вещества и проведения физических исследований нейтронно-радиационными методами

Изобретение относится к отпаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для проведения неразрушающего элементного анализа вещества и проведения исследований нейтронно-радиационными методами, в т.ч

Изобретение относится к средствам контроля движения гранулированных твердых тел по тракту пневмотранспортирования

Изобретение относится к области плазменной техники. Способ генерирования импульсного потока высокоэнергичных частиц, содержащий следующие этапы: инициирование ионной плазмы на первом электроде (111) в вакуумной камере (110) и обеспечение возможности развития указанной плазмы по направлению ко второму электроду (112) в указанной вакуумной камере, подача короткого импульса высокого напряжения между указанными электродами в промежутке времени, при котором указанная ионная плазма находится в переходном состоянии с пространственным распределением ионов или электронов на расстоянии от указанного второго электрода, с целью ускорения указанных распределенных ионов или электронов по направлению к указанному второму электроду, благодаря чему генерируется высокоэнергетический поток заряженных частиц, в то же время преодолевается предел тока, связанный с пространственным зарядом, обычного вакуумного диода и генерирование указанных частиц высокой энергии на указанном втором электроде (112). Технический результат - повышение плотности тока в течение ультракороткого импульса. 2 н. и 9 з.п. ф-лы, 6 ил.

Изобретение относится к генератору нейтронов и способу его конструирования. Генератор включает в себя решетку, выполненную с возможностью выработки ионизируемого газа при нагреве электронами, сталкивающимися с ней. Катод испускает электроны для нагрева решетки и столкновений с выработанными атомами ионизируемого газа для образования ионов. Нейтроны образуются от столкновения ионов, падающих на мишень в генераторе. Инструмент для подземного использования, включающий в свой состав генератор нейтронов. Техническим результатом является обеспечение возможности работы с различными типами источников и при различных условиях. 1 н. и 24 з.п. ф-лы, 5 ил.

Изобретение относится к генераторам нейтронов и может быть использовано для нейтронного анализа веществ, материалов и изделий, для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Технический результат - повышение надежности и уменьшение габаритов генератора нейтронов. В генераторе нейтронов в объеме заземленного корпуса размещен изолированный и проходящий через объем контейнера проводящий стержень, концы которого электрически соединены с корпусом, две тороидальные обмотки на кольцевых сердечниках, охватывающих проводящий стержень, одна из которых расположена у проводящего заземленного корпуса и подключена к выходу заземленного источника переменного напряжения, а вторая размещена в проводящем контейнере и подключена к входу блока питания. 1 ил.

Изобретение относится к устройствам для получения нейтронов и может быть использовано для нейтронного анализа для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Техническим результатом изобретения является увеличение эффективности источника ионов запаянной нейтронной трубки и увеличение потока нейтронов. Технический результат достигается тем, что в запаянной нейтронной трубке между корпусом источника ионов и анодом параллельно оси трубки установлен трубчатый изолятор, по всей длине, кроме концов, покрытый проводящим слоем, электрически соединенным с катодом, а внутри трубчатого изолятора расположен проволочный проводник, соединенный с вытягивающим электродом и выводом проходного изолятора. 1 ил.
Наверх