Способ стабилизационной обработки воды

Изобретение относится к области очистки природных вод, преимущественно геотермальных, и может быть использовано, например, в теплоэнергетике и теплоснабжении. Способ стабилизационной обработки геотермальной воды заключается в ее дегазации с последующим использованием образовавшихся кристаллов карбоната кальция в качестве затравки. Перед дегазацией парциальное давление углекислого газа в обрабатываемой воде доводят до равновесного значения путем замещения на другой газ - азот. При этом исходное давление в воде перед ее дегазацией сохраняют. Способ обеспечивает повышение эффективности стабилизационной обработки воды за счет более глубокой очистки ее от растворенного в ней карбоната кальция. 2 ил., 1 табл.

 

Изобретение относится к области обработки природных вод при их использовании для выработки электроэнергии, теплоснабжения, а также в различных отраслях промышленности и в сельском хозяйстве.

Известны способы предотвращения карбонатных отложений с помощью введения в обрабатываемую воду кристаллической затравки с добавлением поверхностно-активных веществ [1].

Недостатками их являются загрязнение водоемов поверхностно-активными веществами, а также необходимость расходования химических реагентов.

Наиболее близким к описываемому изобретению по технической сущности и достигаемому результату является способ предотвращения карбонатных отложений в геотермальной воде, заключающийся в ее дегазации с последующим использованием образовавшихся кристаллов карбоната кальция в качестве затравки [2].

Недостаток данного изобретения заключается в невысокой эффективности очистки воды от карбоната кальция. Это связано с недостаточной степенью удаления углекислого газа из обрабатываемой воды после дегазации и невысоким значением перепада парциального давления углекислого газа в воде от равновесного до конечного значения.

Техническим решением предлагаемого изобретения является повышение эффективности стабилизационной обработки воды, заключающееся в более глубокой очистке ее от растворенного в ней карбоната кальция.

Техническое решение достигается тем, что в способе стабилизационной обработки геотермальной воды, заключающейся в ее дегазации при снижении исходного давления с последующим возвратом образовавшихся кристаллов карбоната кальция в исходную воду и использованием в качестве затравки, перед дегазацией при сохранении исходного давления в воде парциальное давление углекислого газа в ней доводят до равновесного значения путем замещения части растворенного углекислого газа азотом.

Схема реализации предлагаемого способа стабилизационной обработки воды дается на примере геотермальной воды скважины №3Т г.Кизляра Республики Дагестан. Вода скважины содержит ионы, мг/л: Na+ - 2260; Са2+ - 160; Mg2+ - 40; Cl- - 3550; HCO3- - 390; SO42- - 150. Газосодержание - 1,2 м33, в процентном отношении - СО2 - 18%, N2+СН4 - 82%. pH 6,55.

На фиг.1 - блок-схема реализации способа, на фиг.2 - кривые, соответствующие реальным (1) и возможным (2) значениям равновесного давления и температуры воды скважины 3Т, при которых вода стабильна.

Геотермальная вода из скважины 1 поступает в конвертор 2 с исходным давлением Рo; где осуществляется замена части углекислого газа, растворенного в воде, на азот с таким расчетом, что парциальное давление углекислого газа на выходе из конвертора 2 устанавливается на величине, близкой к равновесному, то есть из воды еще не выделяется твердая фаза карбоната кальция. При этом исходное давление Рo в воде сохраняется. Далее вода с давлением Рo поступает в кристаллизатор-отстойник 3, где происходит ее дегазация при резком падении давления от исходного Рo до конечного Pt значения. Нарушается карбонатно-кальциевое равновесие и в толще воды выделяется большое количество твердой фазы карбоната кальция. Образовавшийся осадок из нижней части кристаллизатора-отстойника 3 выводится наружу по линии 4, а часть его по линии 5 подается обратно в кристаллизатор-отстойник 3 в качестве затравки. Выделившиеся при дегазации пар и газ по линии 6 поступают к соответствующему потребителю, а обработанная (стабильная) вода подается по линии 7 для нужд горячего тепловодоснабжения.

Обычно на практике при осуществлении дегазации (фиг.2) перепад давления ΔР от исходного Рo до конечного Pt значения состоит из двух составляющих:

где ΔР1=Po-Ps - перепад давления от исходного Рo до равновесного Ps значения, при котором еще не выделяется твердая фаза карбоната кальция; ΔР2=Ps-Pt - перепад давления от равновесного Ps до конечного Рt значения. При замещении части углекислого газа в воде на азот значение Ps смещается в сторону исходного давления Рo и перепад давления

,

где .

При этом скорость кристаллизации карбоната кальция в присутствии кристаллической затравки определяется согласно исследованиям [3-5]:

где k - коэффициент пропорциональности; n - константа поверхностной реакции (n=1÷2); S - площадь поверхности кристаллической затравки; С-Cs - пересыщение раствора воды по карбонату кальция. Как видно из (2), чем больше С-Cs, тем больше скорость кристаллизации, а пересыщение раствора С-Cs, в свою очередь, прямо пропорционально второй составляющей ΔР2 (или ). Поэтому, чем больше ΔР2 (или ) при дегазации, тем эффективнее идет процесс кристаллизации карбоната кальция на затравке. На фиг.2 показана разница в величинах ΔР2 и при подаче воды на дегазацию без замещения СО2 на азот (кривая 1) и с замещением (кривая 2) соответственно.

В работе [6] показано образование твердой фазы карбоната кальция в воде скважины 3Т в виде частиц взвеси сразу после дегазации ее при различных перепадах давления в системе (см. табл.1). При большом перепаде и большой поверхности, образующейся при этом, кристаллической затравки скорость кристаллизации карбоната кальция из раствора возрастает, то есть имеет место так называемое явление массовой кристаллизации. А многократное использование кристаллической затравки для обработки воды приводит к более глубокой очистке воды от растворенного в ней карбоната кальция. Результаты опытов по очистке геотермальной воды скв. №3Т г.Кизляра от растворенного в ней карбоната кальция при замене части углекислого газа на азот и использовании кристаллической затравки для ее обработки показаны в таблице 2. Как видно из таблицы 2, при замене 50% углекислого газа на азот перед дегазацией концентрация ионов Са2+ в воде после дегазации и обработки ее кристаллической затравкой снижается до уровня 110 мг/л против 125 мг/л без замены СО2 на азот, что свидетельствует о более глубокой очистке воды от растворенного в ней карбоната кальция.

Технически замена СО2 на азот была осуществлена следующим образом. В емкости из нержавеющей стали объемом 1,2 м3 исходное давление Рo=0,6 МПа. Парциальное давление СО2 при этом составляло 0,18×0,6 МПа = 0,108 МПа. Снизили Рo до 0,3 МПа. Это - давление, при котором еще не выделяется твердая фаза карбоната кальция из раствора воды скв. 3Т. Далее с помощью насоса закачали в емкость воздух (в воздухе 78% азота и 21% О2) до достижения исходного значения Рo=0,6 МПа. Парциальное давление СО2 при этом составило 0,09×0,6 МПа = 0,054 МПа.

Таким образом, в способе стабилизационной обработки геотермальной воды, заключающейся в ее дегазации при снижении исходного давления с последующим возвратом образовавшихся кристаллов карбоната кальция в исходную воду и использованием в качестве затравки, замещение части углекислого газа на азот с сохранением исходного давления в воде перед ее дегазацией позволяет повысить эффективность стабилизационной обработки воды, заключающейся в более глубокой очистке ее от растворенного в ней карбоната кальция.

Источники информации

1. Авторское свидетельство СССР №307070, кл. С02В 5/00, 1971.

2. Авторское свидетельство СССР №810615, кл. C02F 5/00, 1981.

3. Nivlt J., Karpinski P. Determination of individual rate constans of reaction and diffusion steps from over - oll cristall growth coefficient // Kristall und Technik. 1977. Vol.12. P.1233-1241.

4. Васина Л.Г., Богловский А.Б., Календарев P.H. Изучение кинетики образования карбоната кальция в закрытой системе.// Тр. МЭИ, 1980, Вып.466, С.51-56.

5. Новиков Б.Е., Ахмедов Г.Я. Кинетика кристаллизации карбоната кальция из геотермальных вод в присутствии затравочных кристаллов. // Материалы III-го международного симпозиума по гидротермальным реакциям, Фрунзе, Киргизия. 1989. С.28.

6. Ахмедов Г.Я. Исследование процессов кристаллизации карбоната кальция при использовании геотермальных вод. // Материалы научно-практической конференции «Геоэкологические проблемы освоения и охраны ресурсов подземных вод Восточного Предкавказья», 22-26 сентября 2003 г., Махачкала: РАН, Дагестанский научный центр, 2003, С.162-165.

Способ стабилизационной обработки геотермальной воды, заключающийся в ее дегазации при снижении исходного давления с последующим возвратом образовавшихся кристаллов карбоната кальция в исходную воду и использованием в качестве затравки, отличающийся тем, что перед дегазацией при сохранении исходного давления в воде парциальное давление углекислого газа в ней доводят до равновесного значения путем замещения части растворенного углекислого газа азотом.



 

Похожие патенты:
Изобретение относится к технологии очистки воды, в частности к способам для получения воды, не содержащей ионов жесткости, и может использоваться как самостоятельно для умягчения высокоминерализованных вод, так и в качестве одного из звеньев в технологии получения деионизованной воды.

Изобретение относится к области обработки воды, в частности к умягчению воды осаждением солей жесткости с помощью затравочного материала. .

Изобретение относится к устройствам для опреснения морских и грунтовых вод путем дистилляции и может быть использовано для создания опреснительных установок малой производительности, обеспечивающих на постоянной основе питьевой водой локальных потребителей в регионах, не имеющих централизованного водоснабжения.
Изобретение относится к технологии очистки и обессоливания воды, водных растворов солей в промышленности и быту и может быть использовано для очистки питьевой воды, промышленных стоков.

Изобретение относится к устройствам для очистки воды, в частности для снижения жесткости воды. .
Изобретение относится к области очистки подземных вод от железа, марганца, сероводорода, диоксида углерода и солей жесткости для питьевых целей. .
Изобретение относится к химической промышленности, а именно к способам получения легких сортов магнезии из серпентинита. .
Изобретение относится к водоснабжению, в частности к способам умягчения подземных вод с высокой жесткостью. .

Изобретение относится к термическому умягчению и обезжелезиванию соленых и жестких вод и может быть использовано при переработке природных вод, в частности при подготовке питательной воды для паровых и водогрейных котлов, а также для приготовления питьевой воды.

Изобретение относится к устройствам для электрохимической обработки воды и может быть использовано в различных областях для очистки, обеззараживания и улучшения вкусовых и органолептических свойств воды.

Изобретение относится к очистным сооружениям, используемым, в частности, на моечных станциях автотранспорта. .
Изобретение относится к способам производства биологически активного льда. .

Изобретение относится к способам очистки сточных вод, содержащих ионы тяжелых металлов и сульфаты в высоких концентрациях, например сточных вод гальванического производства.
Изобретение относится к области химической обработке промышленных или бытовых сточных вод, содержащих смазочно-охлаждающие жидкости, радиоактивные загрязнения, моющие растворы и ионы тяжелых металлов.
Изобретение относится к области химической обработке промышленных или бытовых сточных вод, содержащих смазочно-охлаждающие жидкости, радиоактивные загрязнения, моющие растворы и ионы тяжелых металлов.

Изобретение относится к обработке жидких сред и может быть использовано в химической, нефтяной, нефтехимической и других отраслях промышленности для интенсификации различных физико-химических процессов: гомогенизации, эмульгирования, растворения и т.д.

Изобретение относится к обработке жидкостей на основе воды и может быть использовано для доочистки питьевой воды, в фармакологии при производстве биоактивных и гомеопатических препаратов, ветеринарии, животноводстве и растениеводстве.

Изобретение относится к области электролитической обработки сточных вод, содержащих эмульгированные и коллоидно-диспергированные загрязнения, и может быть использовано для очистки сточных вод на предприятиях нефтяной, химической и газовой промышленности.
Изобретение относится к области разделения суспензий с выделением осадка в качестве целевого продукта и может быть использовано в угледобывающей, углехимической, горно-рудной, пищевой, химической промышленности, при очистке сточных вод, индустрии строительных материалов
Наверх