Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе метаниобата лития и может быть использовано в устройствах дефектоскопического контроля оборудования атомных реакторов, работающих при высоких температурах. Пьезоэлектрический керамический материал на основе метаниобата лития содержит оксиды лития, ниобия и стронция при следующем соотношении компонентов, мас.%: Li2O - 9,02÷9,17; Nb2O5 - 86,27÷86,77; SrO - 4,71÷4,06. Материал изготавливается по обычной керамической технологии. Технический результат изобретения - достижение высоких значений верхнего предела рабочих температур, коэффициента электромеханической связи толщинной моды колебаний, пьезомодуля, при этом отношение коэффициентов электромеханической связи толщинной и планарной мод колебаний, а также пьезомодулей стремится к бесконечности, что способствует подавлению паразитных колебаний, искажающих форму рабочего сигнала. 2 табл.

 

Изобретение относится к пьезоэлектрическим керамическим материалам на основе метаниобата лития и может быть использовано в устройствах дефектоскопического контроля оборудования атомных реакторов, работающих при высоких температурах.

Наиболее близким к заявляемому материалу по технической сущности и достигаемому результату является пьезоэлектрический керамический материал на основе метаниобата лития, включающий Li2O, Nb2О5, В2О3, SiO2, CaO. Материал имеет верхний предел рабочих температур Траб=(900+1220)К, пьезомодуль d33=(6,9+13,0)пКл/Н, коэффициент электромеханической связи толщинной моды колебаний kt=0,20, конечное (и низкое) отношение коэффициентов электромеханической связи толщинной kt и планарной kp мод колебаний kt/kp=20, отношение пьезомодулей d33/|d31=20 (низкая анизотропия пьезосвойств). (Смотраков В.Г., Панич А.Е., Полонская A.M., Еремкин В.В., Вусевкер Ю.А. Пьезокерамический материал. // Патент РФ №2040506 от 25.07.1995 по заявке №5058742/33 (приоритет от 14.08.1992), МПК С04В 35/00) (прототип). Для указанного применения материал имеет недостаточно высокие Траб, kt, d33, kt/kp, d33/|d31|.

Задачей изобретения является получение значений Траб=1400 К, kt=0,32÷0,35, d33=18-20 пКл/Н, kt/kр=d33/|d31|→∞.

Указанный результат достигается тем, что пьезоэлектрический керамический материал на основе метаниобата лития, включающий Li2O, Nb2O5 и добавки, в качестве добавки содержит SrO при следующем соотношении компонентов, мас.%: Li2O - 9,02÷9,17; Nb2O5 - 86,27÷86,77; SrO - 4,71÷4,06.

В качестве исходных компонентов использованы оксиды и карбонаты следующих квалификаций: Li2CO3 - «хч», Nb2O5 - «Нбо-Пт», SrO - «чда».

1. Пример изготовления пьезоэлектрического материала

Материал изготавливается по обычной керамической технологии следующим образом. Синтез осуществляется путем двукратных обжигов смеси Li2O 9,02 мас.%,

Nb2O5 86,27 мас.%, SrO 4,71 мас.%, с промежуточным помолом синтезированного продукта. Температуры обжигов , , длительности изотермических выдержек τ12=14,4·103 с. Спекание образцов диаметром 12÷15 мм, высотой 3-5 мм осуществляется двукратными обжигами, при этом первый обжиг при производят под давлением 10 МПа в течение 0,3·103 с, а второй - без давления при Тсп.2 1300 К в течение 7,2·103 с. Металлизация (нанесение электродов) производится путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг=1070 К в течение 1,8·103 с. Образцы поляризуют в полиэтиленсилоксановой жидкости при температуре 450 К в течение 2,4·103 с в постоянном электрическом поле напряженностью 70 кВ/см.

Электрофизические характеристики определяют в соответствии с ОСТ 11.0444-87, пьезомодуль d33 измеряют квазистатическим методом.

2. Пример изготовления пьезоэлектрического материала.

Материал изготавливается по обычной керамической технологии следующим образом. Синтез осуществляется путем двукратных обжигов смеси Li2O 9,17 мас.%, Nb2O5 86,77 мас.%, SrO 4,06 мас.% с промежуточным помолом синтезированного продукта. Температуры обжигов Тсинт.1 1120 К, Тсинт.2 1170 К, длительности изотермических выдержек τ12=14,4·103 с. Спекание образцов диаметром 12-15 мм, высотой 3-5 мм осуществляется двукратными обжигами, при этом первый обжиг при производят под давлением 10 МПа в течение 0,3·103 с, а второй - без давления при в течение 7,2·103 с. Металлизация (нанесение электродов) производится путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг=1070 К в течение 1,8·103 с. Образцы поляризуют в полиэтиленсилоксановой жидкости при температуре 450 К в течение 2,4·103 с в постоянном электрическом поле напряженностью 70 кВ/см.

Электрофизические характеристики определяют в соответствии с ОСТ 11.0444-87, пьезомодуль d33 измеряют квазистатическим методом.

На фиг.1, где изображена таблица 1, приведены основные характеристики материала в зависимости от состава, а на фиг.2, где изображена таблица 2, приведены основные электрофизические характеристики для оптимального состава предлагаемого материала.

Полученные экспериментальные данные (фиг.1, табл.1, примеры 4, 5) свидетельствуют о том, что пьезоэлектрический керамический материал предлагаемого состава обладает оптимальными с точки зрения решаемой технической задачи характеристиками в указанном интервале величин компонентов.

Данные, приведенные на фиг.2 (табл.2), подтверждают преимущества предлагаемого пьезоэлектрического керамического материала по сравнению с материалом-прототипом, а именно повышение верхнего предела рабочих температур Траб. до 1400 К, отношений пьезомодулей d33/|d31| и коэффициентов электромеханической связи толщинной и планарной мод колебаний kt/kp до бесконечности за счет «сведения» к нулю |d31| и kp, повышение значений пьезохарактеристик d33 и kt. Механическая добротность Qm материала меньше 100, относительная диэлектрическая проницаемость ε33то~50, диэлектрические потери <2% (tgδ·102=1,9). Расширение интервалов концентраций составляющих компонентов (примеры 1, 2, 3, 6, 7 табл.1.) приводит к снижению Траб, d33/|d31|, kt/kp, d33, kt.

Эффект повышения указанных параметров достигается, по существу, введением в метаниобат лития (LiNbO3) пирониобата стронция (Sr2Nb2O7), имеющего более высокую, чем в LiNbO3, температуру Кюри , слоистую кристаллическую структуру и ориентированную (текстурированную) зеренную структуру, наследуемые предлагаемым материалом. Благоприятствует повышению указанных параметров и использование на стадии рекристаллизации (образования зеренной структуры) при кратковременного воздействия извне приложенного давления («ковка»), способствующего текстурированию материала и, как следствие, усилению пьезоотклика.

Предлагаемый пьезоэлектрический керамический материал получают по обычной керамической технологии без использования стеклообразующих добавок (В2О3, SiO2), примененных в прототипе, значительно усложняющих (ввиду их кристаллохимических особенностей) технологический процесс. Кроме того, использование токсичных соединений бора резко ограничивает круг возможных применений пьезокерамики (Директива 2002/95/ЕС Европейского парламента с пересмотром от 27 января 2003 года об использовании опасных материалов в электронике и электронных приборах). В нашем случае, простой химический состав предлагаемого материала, не содержащий легколетучих токсичных веществ, позволяет упростить и удешевить процесс производства пьезокерамических изделий.

Указанные параметры нового материала позволят его использовать в более широком диапазоне температур, а бесконечная анизотропия пьезосвойств в сочетании с низкой механической добротностью Qm приведет к повышению отношения сигнал/шум и подавлению паразитных резонансов (ложных колебаний), искажающих форму рабочего сигнала и ухудшающих характеристики изготовленных из этих материалов датчиков. Это благоприятствует повышению разрешающей способности и чувствительности материалов и датчиков. Достижение бесконечной анизотропии пьезосвойств не сопряжено с развитием в керамиках микротрещин, как это имеет место в других высокотемпературных материалах с высокими отношениями kt/kp и d33/|d31|. Это является следствием качественно-количественного элементного состава предлагаемого материала и особенностей его кристаллической и зеренной структур. Низкие значения относительной диэлектрической проницаемости ε33то и тангенса угла диэлектрических потерь tgδ материала позволяют его использовать в СВЧ-технике, а низкий удельный вес d - в устройствах, где весовые характеристики являются решающими.

Пьезоэлектрический керамический материал на основе метаниобата лития, включающий Li2O и Nb2O5, отличающийся тем, что дополнительно содержит SrO при следующем соотношении компонентов, мас.%:

Li2O 9,02÷9,17
Nb2O5 86,27÷86,77
SrO 4,71÷4,06



 

Похожие патенты:
Изобретение относится к способу получения керамических образцов на основе оксида ванадия V2О3 , легированного оксидом хрома Cr2О3. .

Изобретение относится к керамическим материалам на основе окислов титана и может быть использовано в производстве многослойных высокочастотных термостабильных керамических конденсаторов с электродами на основе сплава, содержащего Ag и Pd, а также в производстве микроволновых фильтров.

Изобретение относится к керамическим материалам на основе цинкзамещенного ниобата висмута и может быть использовано в производстве многослойных высокочастотных термостабильных керамических конденсаторов с электродами на основе сплава, содержащего Ag и Pd, а также в производстве многослойных микроволновых фильтров.

Изобретение относится к области цветной металлургии и может быть использовано в производстве синтетических материалов для керамических диэлектриков. .

Изобретение относится к электронной технике, может быть использовано при изготовлении линейных датчиков температуры - терморезисторов с отрицательным коэффициентом электросопротивления, применяемых в системах аварийной сигнализации.

Изобретение относится к материалам электронной техники и может быть использовано для изготовления термокомпенсирующих высокочастотных конденсаторов. .

Изобретение относится к материалам пьезотехники и может быть использовано в качестве пьезопреобразователя для датчиков, работающих в широком диапазоне температур и давлений.

Изобретение относится к пьезоэлектрическим керамическим материа лам и может быть использовано для создания высокочастотных электромеханических преобразователей, в частности в ультразвуковых линиях задержки , моночастотных резонаторах, работающих на толпцшньпс колебаниях, акселерометров , работающих в широком диапазоне температур.

Изобретение относится к области пьезотехники и может быть использовано для создания высокочастотных электромеханических преобразователей, основанных на явлении пьезоэлектричества , в частности в ультразвуковых линиях задержки, моночастотных резонаторах li.

Изобретение относится к пьезотехнике и предназначено для изготовления пьезоэлементов для вибропреобразователей , работающих при высоких температурах. .
Изобретение относится к области пироэлектрических керамических материалов и может быть использовано для создания пироэлектрических детекторов для регистрации теплового и светового потоков излучения
Изобретение относится к химически устойчивым материалам, в частности, применяемым для облицовки реакционных сосудов, реакторов, мельниц, пресс-форм и т.п., которые используют при производстве анодов для электролитических конденсаторов с твердым электролитом

Изобретение относится к производству пьезоэлектрических керамических материалов и может быть использовано для создания высокочастотных электромеханических преобразователей, применяемых, в частности, в ультразвуковых линиях задержки (эксплуатируемых в частотном диапазоне (20÷30) мГц), высокочувствительных моночастотных резонаторах, работающих на толщинных колебаниях; в устройствах, где весовые характеристики являются решающими. Пьезоэлектрический керамический материал на основе ниобата натрия содержит оксиды натрия, ниобия, лития, стронция, алюминия и марганца при следующем соотношении компонентов, масс.%: Na2O 16.28÷16.50, Nb2O5 http://79.61-e-80.71÷, Li2O 1.12÷1.14, SrO 0.63÷0.64, Al2O3 0.31÷0.32, MnO2 0.69÷2.05. Материал изготавливают по обычной керамической технологии. Температура обжига при синтезе 1133 К. Технический результат изобретения - материал обладает низким значением относительной диэлектрической проницаемости поляризованных образцов, высокой пьезочувствительностью на толщинной моде колебаний, достаточно высоким значением механической добротности, а также высокой скоростью звука, низкой плотностью, высокой пьезоанизотропией. 3 пр., 5 табл., 5 ил.

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобата натрия и может быть использовано для создания низкочастотных приемных устройств - гидрофонов, микрофонов, гидроприемников, а также для создания низкочастотных электромеханических преобразователей, возбуждающих металлические резонаторы с высокой скоростью звука. Пьезоэлектрический керамический материал содержит оксиды натрия, калия, кадмия и ниобия при следующем соотношении компонентов, мас.%: Na2O 8,75÷9,72, K2O 5,31÷5,38, CdO 9,15÷10,88, Nb2O5 75,05÷75,77. Материал изготавливается по обычной керамической технологии. Технический результат изобретения - материал обладает высокими значениями относительной диэлектрической проницаемости поляризованных образцов, скорости звука, механической добротности. 3 пр., 5 ил.

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобатов натрия-калия и может быть использовано в среднечастотных радиоэлектронных устройствах, работающих в режиме приема, в том числе в трансдукторах ультразвуковых передатчиков. Техническим результатом изобретения является снижение механической добротности, повышение значений пьезомодуля, пьезочувствительности, удельной чувствительности и коэффициента электромеханической связи. Пьезоэлектрический керамический материал на основе ниобатов натрия-калия включает Na2O, K2O, Nb2O5, Li2O, Ta2O5, Sb2O5 и NiO при следующем соотношении компонентов, в мас.%: Na2O - 8,49-8,67; K2O - 11,00-11,25; Nb2O5 - 60,68-61,98; Li2O - 0,49-0,65; Ta2O5 - 11,20-11,44; Sb2O5 - 5,33-7,15; NiO - 0,82-0,83. 3 пр., 5 ил., 2 табл.

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении механической добротности, относительной диэлектрической проницаемости поляризованных образцов, в повышении пьезомодуля, пьезочувствительности, удельной чувствительности, коэффициента электромеханической связи планарной моды колебаний. Пьезоэлектрический керамический материал содержит следующие элементы, мас.%: Na2O 8,77-8,84; K2O 11,36-11,44; Li2O 0,32-0,33; Ta2O5 11,58-11,67; Sb2O5 3,53-3,56; Nb2O5 62,71-63,17; NiO 0,99-1,73. 3 табл., 3 пр.

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в повышении коэффициента электромеханической связи планарной моды колебаний, снижении относительной диэлектрической проницаемости. Пьезоэлектрический керамический материал содержит следующие компоненты, мас.%: Na2O 8,61-8,70; К2O 11,15-11,26; Li2O 0,49-0,50; Та2O5 11,37-11,49; Nb2O3 61,59-62,19; Bi2O3 0,37-1,10; Fe2O3 0,13-0,38; Sb2O5 5,31-5,37. 3 пр., 3 табл.
Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении относительной диэлектрической проницаемости и механической добротности, в повышении пьезочувствительности, коэффициента электромеханической связи планарной моды колебаний, скорости звука. Пьезоэлектрический керамический материал содержит следующие компоненты, мас.%: Na2O 9,41-9,51; K2O 12,25-12,42; CdO 0,75-1,12; Nb2O5 77,22-77,32. 3 пр., 3 табл.

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано при создании высокочастотных акустоэлектрических преобразователей. Пьезоэлектрический керамический материал содержит оксиды натрия, ниобия, стронция, лития, алюминия, висмута и железа при следующем соотношении компонентов, мас.%: Na2O 16.32-16.40, Nb2O5 79.81-80.20, SrO 0.63, Li2O 1.12-1.13, Al2O3 0.40, Bi2O3 0.92-1.28, Fe2O3 0.32-0.44. Технический результат изобретения - снижение значения относительной диэлектрической проницаемости и повышение значения коэффициента электромеханической связи планарной моды колебаний при сохранении достаточно высоких значений механической добротности. 2 табл.
Наверх