Обнаружение закупоривания межтрубного пространства с использованием датчика давления при газлифтной добыче нефти

Предложенная группа изобретений относится к газлифтной добыче нефти. Способ определения, является ли, по меньшей мере, частично закупоренным наружное межтрубное пространство газлифтной нефтяной скважины, заключается в том, что получают множество разнесенных во времени данных измерений давления в наружном межтрубном пространстве, вычисляют статистический параметр, используя множество данных измерений, и получают показание о закупоривании, основанное на статистическом параметре. Система обнаружения закупоривания наружного межтрубного пространства содержит датчик давления, функционально соединенный с наружным межтрубным пространством газлифтной нефтяной скважины. Датчик давления выполнен с возможностью подачи сигнала давления в наружном межтрубном пространстве. Кроме того, система содержит контроллер, предназначенный для приема сигнала и получения множества данных измерений давления относительно наружного межтрубного пространства с разнесением измерений во времени. При этом контроллер предназначен для вычисления параметра, указывающего на закупоривание межтрубного пространства на основе множества измерений. Техническим результатом является повышение производительности и эффективности обнаружения закупоривания межтрубного пространства. 2 н. и 13 з.п. ф-лы, 4 ил.

 

Область техники

Настоящее изобретение относится к операциям газлифтной добычи нефти. Конкретнее, настоящее изобретение относится к усовершенствованному обнаружению закупоривания межтрубного пространства при проведении таких операций.

Предшествующий уровень техники

Газлифтный способ подъема нефти используют на многих нефтяных скважинах в мире. Действительно, на месторождениях, где имеются значительные количества попутного газа и встречаются образования твердых частиц, он является предпочтительным способом повышения естественного пластового давления и, таким образом, увеличения добычи.

Так как этот способ связан с использованием сравнительно компактного оборудования у устья скважины, то он является особенно привлекательным там, где пространство имеет важное значение, например при добыче на море, и где ограничен доступ для технического обслуживания.

На фиг.1 представлена схема типичной газлифтной нефтяной скважины. Центральная труба 10 ограничивает канал 12, через который сырая нефть течет в направлении по стрелке 14 вверх к поверхности земли и, в конце концов, к одной или большему числу сборных станций. В средней части находится средняя труба 16, расположенная предпочтительно концентрично вокруг трубы 10 для ограничения внутреннего межтрубного пространства 17 между трубой 16 и трубой 10. Сжатый газ нагнетается во внутреннее межтрубное пространство 17 и движется вниз в направлении по стрелке 18 к нижней части трубы. Затем сжатый газ через специальную часть входит в среднюю часть, которая содержит сырую нефть. Это создает газлифт для подъема сырой нефти к поверхности земли по трубе 10. Из-за характера этого процесса внутреннее межтрубное пространство 17 находится под высоким давлением и часто имеет температуру, превышающую температуру окружающей среды. Наружная труба 20 ограничивает наружное межтрубное пространство 22 между трубой 20 и трубой 16. Наружное межтрубное пространство 22 и труба 20 способствуют защите окружающей среды от утечек и любых тепловых ударов при операции перекачивания. В идеальном случае наружное межтрубное пространство 22 имеет давление несколько ниже атмосферного давления и не содержит никаких веществ, например нефть или газ. Однако на практике наружное межтрубное пространство 22 может оказаться под давлением вследствие утечек из внутреннего межтрубного пространства 17 или трещин в трубе 16, определяющей барьер между внутренним межтрубным пространством 17 и наружным межтрубным пространством 22. Давление в наружном межтрубном пространстве иногда может достигать уровней порядка 2000 фунт/кв.дюйм. В этих случаях для эксплуатации скважины может потребоваться специальное разрешение государственного или другого соответствующего регулирующего органа. В таких ситуациях для выполнения правил необходимо контролировать давление в наружном межтрубном пространстве 22.

Одним фактором, который усложняет мониторинг давления в наружном межтрубном пространстве 22, является материал, находящийся в межтрубном пространстве 22, которое может заполниться (частично или полностью) такими материалами, как вода, грязь, нефть из окружающей среды или из нефтеносного пласта. Наличие этих материалов может создать значительную проблему для измерения давления, так как они могут застывать при сравнительно высоких температурах вследствие имеющихся значительных давлений. Как показано на фиг.1, датчик давления, как, например, датчик 24, иногда функционально соединен с наружным межтрубным пространством 22 для контроля давления в нем.

Во время нормальных операций по перекачиванию нефти температура в скважине может быть около 160°F, которая вызвана нагнетанием в систему газа под сравнительно высоким давлением. Вследствие различных причин возможна случайная остановка работы скважины. В этом случае температура в скважине вблизи поверхности земли и в устье скважины над поверхностью земли будет падать до температуры окружающей среды. В этих случаях материал внутри наружного межтрубного пространства 22 может застывать, образуя пробку в межтрубном пространстве 22 и/или контрольно-измерительной трубе 26. Когда это происходит, замеры давления, взятые с использованием датчика 24, уже не будут отражать фактического давления в наружном межтрубном пространстве 22. Когда скважина снова начинает работать, температура в скважине начинает повышаться. Повышение температуры будет вызывать расширение материала в нижних частях межтрубного пространства 22. Так как может иметься застывшая пробка в верхней части межтрубного пространства 22, то может происходить значительное увеличение давления в межтрубном пространстве 22 ниже пробки. Во время этого процесса наблюдались давления в наружном межтрубном пространстве, превышающие 4000 фунт/кв.дюйм. Из-за застывшей пробки в верхней части межтрубного пространства 22 давление, измеренное с использованием датчика 24, не будет показывать на сильное повышение давления. Следовательно, обычным мониторингом давления у устья скважины нельзя определить факт повышения давления. В случае чрезмерного повышения давления в скважине это может вызвать взрыв у устья скважины с утечкой газа в окружающую среду и, возможно, серьезные травмы или даже смерть.

Таким образом, весьма важно определять, становится ли либо уже произошло закупоривание наружного межтрубного пространства. Кроме того, для обеспечения того, что не потребуются дополнительные расходы при этом способе мониторинга, было бы полезно, чтобы мониторинг мог осуществляться без добавления значительных технических средств или времени, затрачиваемого специалистами.

Сущность изобретения

Технической задачей настоящего изобретения является обнаружение закупоривания в наружном межтрубном пространстве в газлифтных нефтяных скважинах. Обнаружение закупоривания в наружном межтрубном пространстве осуществляют, используя датчик давления. Датчик давления предоставляет данные о давлении в наружном межтрубном пространстве нефтяной скважины. Для предоставления показания о закупоривании в межтрубном пространстве используют параметр, связанный с множеством данных о давлении в наружном межтрубном пространстве. Примерами статистического параметра являются средняя величина и среднее квадратичное отклонение.

Краткое описание чертежей

В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопроводительные чертежи, на которых:

фиг.1 изображает схему типичной газлифтной нефтяной скважины,

фиг.2 - блок-схему датчика давления, функционально соединенного с наружным межтрубным пространством, согласно изобретению;

фиг.3 - диаграмму результатов испытания, выполненного согласно изобретению;

фиг.4 - диаграмму среднего квадратичного отклонения как функции времени для тех же самых случаев испытания, что и на фиг.3.

Подробное описание предпочтительных вариантов осуществления изобретения

На фиг.2 показана блок-схема датчика давления 100, функционально соединенного с наружным межтрубным пространством 22. Чувствительный элемент 102 датчика 100 гидравлически соединен с межтрубным пространством 22 и имеет электрическую характеристику, которая изменяется при изменении давления в межтрубном пространстве 22. Чувствительный элемент 102 может быть датчиком давления емкостного типа, датчиком тензорезисторного типа или датчиком любого другого подходящего типа. Чувствительный элемент 102 электрически соединен с аналого-цифровым преобразователем 104. Преобразователь 104 преобразует аналоговый сигнал чувствительного элемента 102 в цифровую форму, которую он по линии 106 направляет к контроллеру 108. Кроме того, согласно одному варианту осуществления изобретения преобразователь 104 может иметь показанный пунктиром дополнительный выход 110, который отражает цифровую последовательность бит, указывающую на аналоговое показание. Использование цифровой последовательности бит позволяет получить высокую разрешающую способность, которая полезна при некоторых видах статистической обработки. Например, в то время как традиционный аналого-цифровой преобразователь может предоставлять цифровые преобразования по линии 106 около 22 раз в секунду, частота цифровой последовательности бит по линии 110 может быть свыше 100 кГц.

Блок 112 питания может содержать любые подходящие схемы для приема и передачи энергии к элементам датчика 100. Блок 112 соединен со всеми составными элементами, нуждающимися в энергии, как это показано линией 114. Блок 112 может содержать аккумулятор или подходящие схемы для соединения с источником энергии. Для некоторых промышленных процессов известны стандартные протоколы по обеспечению оперативным током. Примерами таких протоколов являются сетевые протоколы HART и FOUNDATIONTM. Кроме того, блок 112 питания может содержать один или большее число преобразователей для преобразования потенциальной энергии в электрическую энергию для датчика 100. Таким образом, блок 112 может содержать, например, одну или более солнечных батарей.

Модуль 116 связи соединен с контроллером 108 и обеспечивает датчику 100 устанавливать связь с одним или более внешних устройств. В вариантах осуществления изобретения, в которых датчик 100, как предполагается, будет осуществлять связь с использованием стандартного протокола связи для промышленных процессов, модуль 116 будет соответствующим образом адаптирован. Например, если датчик 100 должен осуществлять связь с использованием сетевого протокола FOUNDATIONTM, то модуль 116 может содержать любые подходящие известные сетевые схемы связи. В некоторых вариантах осуществления изобретения датчик 100 может подавать первый сигнал, указывающий на давление в межтрубном пространстве 22, и второй сигнал, указывающий на закупоривание межтрубного пространства. Известные протоколы обеспечивают подачу таких сигналов по одним и тем же линиям связи. Например, один сигнал может быть подан в аналоговом формате, а второй сигнал может быть наложенным цифровым сигналом.

Контроллер 108 предпочтительно является микропроцессором. Контроллер 108 может быть частью датчика 100 или может быть расположен в месте, отдаленном от датчика 100. Контроллер 108 может содержать внутреннее запоминающее устройство (не показано) и/или может быть соединен с внешним запоминающим устройством 120. При использовании внутреннего запоминающего устройства, внешнего запоминающего устройства 120 или их любого сочетания контроллер 108 будет в течение времени хранить данные об измеренном давлении, связанные с показаниями чувствительного элемента 102. Согласно вариантам осуществления настоящего времени определено, что закупоривание межтрубного пространства 22 можно обнаружить по вторичным вычислениям на основе множества разнесенных во времени показаний чувствительного элемента 102. Остальная часть описания изобретения посвящена использованию статистических параметров. Однако варианты осуществления настоящего изобретения могут быть реализованы на практике с использованием других аналитических методов, например нечетной логики, нейронных сетей, методов обучения, анализа трендов и любых других подходящих методов или их любого сочетания.

Чтобы понять влияние закупоривания, были выполнены различные имитации как на реальных нефтяных скважинах, так и на имитирующих лабораторных установках. При этих имитациях использовали различные клапаны на контрольно-измерительной трубе для искусственного создания состояния закупоренного межтрубного пространства посредством изоляции измерительного устройства от процесса. В качестве устройства для измерения давления использовали имеющийся на рынке датчик давления, продаваемый под торговым наименованием 3051 ST фирмы Rosemount, Inc., Идн Преэри, шт.Миннесота, США. Этот датчик был снабжен дополнительным каналом передачи данных 110 для обеспечения быстрокорректирующими диагностическими средствами для статистических вычислений. Двумя вычисляемыми статистическими параметрами, использовавшимися при этих имитациях, были средняя величина и среднее квадратичное отклонение данных об измерении давления. Однако варианты осуществления настоящего изобретения не должны рассматриваться как ограниченные такими вычисляемыми статистическими параметрами.

На фиг.3 показана диаграмма результатов одного из проведенных испытаний. На этой диаграмме параметр в виде средней величины представлен как функция времени. В этом конкретном случае нормальное рабочее давление в наружном межтрубном пространстве 22 составляет около 426 фунт/кв. дюйм. Каждый раз, когда клапан закрывали для имитации закупоривания межтрубного пространства, показатель среднего давления демонстрировал значительное падение давления по величине по сравнению с нормальным рабочим давлением. Было установлено, что изменения температуры и утечки в трубе/клапанах способствовали этому изменению в результате закупоривания. Таким образом, датчик 100 давления мог быть наделен характеристиками или иным образом тарирован на известное состояние отсутствия закупоривания. В таком случае если средняя величина показаний чувствительного элемента отклоняется за пределы допустимой пороговой величины от «хорошего» состояния на базовой линии, то от датчика 100 давления подается сигнал тревоги или другое соответствующее указание, свидетельствующее о закупоривании межтрубного пространства.

На фиг.4 показана диаграмма стандартного отклонения как функции времени для тех же самых случаев испытания, что и на фиг.3. Параметр в виде среднего квадратичного отклонения представляет собой значительно более отчетливое выражение указаний о закупоривании. Каждый раз, когда система закупорена, наблюдается пик в среднем квадратичном отклонении. Как очевидно из результатов, показанных на фиг.4, среднее квадратичное отклонение может быть использовано в отдельности или в сочетании со средней величиной, чтобы обеспечивать обнаружение закупоривания межтрубного пространства.

Другая усложняющая ситуация - это когда скважину останавливают и запускают вновь. В этом случае давление в наружном межтрубном пространстве 22 не будет таким высоким, как во время нормальной работы. В этом случае все же может быть использован статистический мониторинг процесса. Если было проведено обучение на датчике давления до того, как была остановлена операция перекачивания, то тогда среднее давление в наружном межтрубном пространстве и его среднее квадратичное отклонение могут быть отмечены в виде базовой линии. Когда скважину снова запускают, то ожидается, что результаты измерений давления, как предполагается, повысятся от их значений при остановке, если не имеется никакого закупоривания. Если имеет место закупоривание, то результаты измерений давления не будут значительно повышаться, тем самым указывая на закупоренное межтрубное пространство. Таким образом, согласно одному варианту осуществления настоящего изобретения датчик 100 давления получает сообщение, касающееся операций перекачивания, либо остановки, запуска, либо того и другого. Когда датчик 100 давления получает сообщение, что перекачивание снова начинается, он может ожидать заранее выбранный период времени, прежде чем он сможет принимать ожидаемые результаты измерений.

Предпочтительно, чтобы контролирование статистического параметра, касающегося давления в наружном межтрубном пространстве, выполнялось непрерывно, варианты осуществления настоящего изобретения могут быть применены на практике посредством приема данных о давлении в наружном межтрубном пространстве с выбранными интервалами времени или даже в ответ на запросы специалистов. Однако чувствительный элемент 102 должен сделать достаточное количество измерений давления, чтобы обеспечить статистические вычисления.

Хотя настоящее изобретение было описано со ссылкой на предпочтительные варианты его осуществления, специалистам в данной области техники будет понятно, что могут быть сделаны изменения по форме и в деталях, находящиеся в объеме изобретения и не отклоняющиеся от его сущности.

1. Система обнаружения закупоривания наружного межтрубного пространства в газлифтной нефтяной скважине, содержащая
датчик давления, функционально соединенный с наружным межтрубным пространством газлифтной нефтяной скважины и выполненный с возможностью подачи сигнала давления в наружном межтрубном пространстве, и
контроллер, предназначенный для приема сигнала и получения множества данных измерений давления относительно наружного межтрубного пространства с разнесением измерений во времени, при этом контроллер предназначен для вычисления параметра, указывающего на закупоривание межтрубного пространства на основе множества измерений.

2. Система по п.1, отличающаяся тем, что контроллер является элементом датчика давления.

3. Система по п.1, отличающаяся тем, что датчик давления выполнен с возможностью подачи первого сигнала, указывающего на давление в наружном межтрубном пространстве, и второго сигнала, указывающего на закупоривание.

4. Система по п.1, отличающаяся тем, что датчик давления дополнительно содержит аналого-цифровой преобразователь, подающий цифровые преобразования к контроллеру.

5. Система по п.1, отличающаяся тем, что датчик давления дополнительно содержит аналого-цифровой преобразователь, подающий высокоскоростную последовательность битов к контроллеру.

6. Система по п.1, отличающаяся тем, что в качестве параметра использован статистический параметр.

7. Система по п.6, отличающаяся тем, что в качестве статистического параметра использована средняя величина.

8. Система по п.6, отличающаяся тем, что в качестве статистического параметра использовано среднее квадратичное отклонение.

9. Система по п.6, отличающаяся тем, что в качестве статистического параметра использовано сочетание средней величины и среднего квадратичного отклонения.

10. Система по п.1, отличающаяся тем, что параметр вычислен с использованием нечеткой логики.

11. Система по п.1, отличающаяся тем, что параметр вычислен с использованием нейронной сети.

12. Способ определения, является ли, по меньшей мере, частично закупоренным наружное межтрубное пространство газлифтной нефтяной скважины, заключающийся в том, что
получают множество разнесенных во времени данных измерений давления в наружном межтрубном пространстве,
вычисляют статистический параметр, используя множество данных измерений, и
получают показание о закупоривании, основанное на статистическом параметре.

13. Способ по п.12, отличающийся тем, что способ осуществляют посредством датчика давления.

14. Способ по п.12, отличающийся тем, что в качестве статистического параметра используют среднюю величину.

15. Способ по п.12, отличающийся тем, что в качестве статистического параметра используют среднее квадратичное отклонение.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для замера уровня нефти и воды в затрубном пространстве глубинно-насосной скважины. .

Изобретение относится к области геофизических исследований скважин и может быть использовано при определении пространственных координат забоя скважины в процессе бурения, а так же ранее пробуренных наклонных и горизонтальных скважин.

Изобретение относится к нефтяной промышленности и может быть использовано для эксплуатации нефтяных скважин с применением глубинных электроцентробежных насосов в качестве кабельного ввода высокого давления.

Изобретение относится к оборудованию для герметизации устья скважин и может быть использовано при проведении геофизических исследований в горизонтальных скважинах с избыточным давлением на устье с помощью геофизических приборов, присоединенных к колонне НКТ малого диаметра и спускаемых в скважину на геофизическом кабеле вместе с колонной НКТ.

Изобретение относится к области нефтедобычи, и может быть использовано для оперативного учета дебитов продукции нефтяных и газоконденсатных скважин в системах герметизированного сбора.

Изобретение относится к области измерения количества жидкости и газа в газожидкостной смеси. .

Изобретение относится к добыче нефти и может быть использовано в нефтедобывающей промышленности для определения дебита нефтяных скважин. .

Изобретение относится к бурению направленных и глубоких скважин с использованием забойных навигационных телесистем (ЗНТ). .

Изобретение относится к газовой промышленности и может быть использовано для определения количества воды, содержащейся в продукции газовых скважин. .

Изобретение относится к нефтедобывающей промышленности и предназначено для контроля технического состояния скважин с использованием радиоактивного изотопа, например радона

Изобретение относится к нефтедобывающей промышленности и предназначено для получения информации о геологической формации, об обсадной трубе или о флюиде в обсадной трубе

Изобретение относится к нефтедобывающей промышленности и предназначено для получения информации о геологической формации, об обсадной трубе или о флюиде в обсадной трубе

Изобретение относится к промысловой геофизике и предназначено для контроля за искривлением бурящихся скважин

Изобретение относится к исследованию газо- и нефтедобывающих скважин и может быть использовано для контроля уровня жидкости в скважине в процессе ее эксплуатации

Изобретение относится к области геофизических исследований скважин и может быть использовано при сборке скважинного прибора телеметрической системы

Изобретение относится к нефтегазодобывающей промышленности и может найти применение при определении перетоков жидкости в скважине

Изобретение относится к области разработки и эксплуатации нефтяных месторождений, в частности к устройствам, предназначенным для измерения дебита нефтедобывающих скважин
Наверх