Способ получения регенерируемого поглотителя диоксида углерода

Изобретение относится к способу получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония и может быть использовано для очистки от диоксида углерода атмосферы герметичных объектов, для создания контролируемой газовой среды и т.п. Способ заключается во взаимодействии соли циркония и вещества, образующего гидроксид циркония, при этом в качестве соли циркония используют основной карбонат циркония, а в качестве вещества, образующего гидроксид циркония, используют оксид и/или гидроксид цинка при мольном соотношении металла цинка к цирконию от 1:0,33 до 1:2,5, предпочтительно от 1:1,0 до 1:2,0. Изобретение позволяет упростить технологию изготовления поглотителя и увеличить динамическую активность поглотителя по диоксиду углерода. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к способу получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония и может быть использовано в технологии получения регенерируемых поглотителей диоксида углерода для очистки атмосферы от диоксида углерода герметичных объектов, для создания контролируемой газовой среды в плодоовощехранилищах, для очистки атмосферного воздуха в топливных элементах и других областях техники, где необходимо получение газов, свободных от диоксида углерода.

Известен способ получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония, основанный на взаимодействии растворов солей циркония: оксихлоридов, оксинитратов или нитратов с растворами гидроксидов щелочных металлов или аммиаком (Бойчинова Е.С. Автореферат диссертации «Иониты и окислительно-восстановительные полимеры на основе циркония». Л., ЛТИ им. Ленсовета, 1973 г.).

Способ заключается во взаимодействии разбавленных солей циркония (оксинитрат циркония и хлорид циркония) с растворами гидроокиси натрия, калия, цезия и аммония.

Известен способ получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония, основанный на взаимодействии растворов солей циркония с растворами щелочей (АС СССР №865381, МКИ B01J 20/06, 1981 г.). Способ состоит в следующем.

Готовят растворы азотнокислого цирконила и растворы щелочи (КОН или NaOH). Крепкий 3-4 н. раствор азотнокислого цирконила вводят при перемешивании в 8-20 н. раствор щелочи. Образующийся осадок гидроксида циркония отделяют от маточного раствора, сушат при температуре 50-60°С, обрабатывают раствором щелочи, промывают водой до отрицательной реакции на анионы, сушат.

Для получения гранул порошок подвергают формованию известными способами.

Недостатками обоих известных способов являются трудоемкость изготовления, заключающаяся в большом количестве операций, и использование дорогостоящих солей циркония азотнокислого цирконила оксихлорида циркония.

Известен способ получения регенерируемого поглотителя диоксида углерода из влажной атмосферы герметичных объемов на основе гидратированной двуокиси циркония (АС СССР №643431, МКИ C01G 25/02, 1979 г.) взаимодействием соли циркония и вещества, образующего гидроксид циркония. Способ заключается во взаимодействии раствора азотнокислого цирконила с раствором едкого натра с последующей отмывкой и сушкой продукта. Для повышения дисперсности и сорбционной емкости по диоксиду углерода исходные растворы берут с концентрацией азотнокислого цирконила 3-4 н. и едкого натра 8-20 н., осадок перед отмыванием и сушкой подвергают дополнительным операциям сушки при 50-60°С и обработки раствором едкого натра, взятым в количестве 20-50% от первоначального. Полученный тонкодисперсный порошок формуют в гранулы на любом грануляторном устройстве. Динамическая активность поглотителя по диоксиду углерода составляет 4-5 л/л.

Однако этот способ характеризуется большой трудоемкостью, обусловленной многостадийностью процесса и необходимостью операций отмывки образующейся гидратированной двуокиси циркония от анионов, а также использованием большого количества реагентов на единицу конечного продукта.

Задачей изобретения является упрощение технологии изготовления поглотителя и снижение его себестоимости, а также увеличение динамической активности регенерируемого поглотителя по диоксиду углерода.

Техническим результатом изобретения является сокращение количества используемых в процессе реагентов, уменьшение количества операций способа и увеличение динамической активности поглотителя по двуокиси углерода.

Технический результат достигается тем, что в способе получения регенерируемого поглотителя диоксида углерода, включающем взаимодействие соли циркония и вещества, образующего гидроксид циркония, в качестве соли циркония используют основной карбонат циркония, а в качестве вещества, образующего гидроксид циркония, используют оксид и/или гидроксид цинка.

Изменение типа исходных компонентов в способе получения поглотителя диоксида углерода позволяет, во-первых, исключить операцию приготовления исходных растворов, так как указанные компоненты взаимодействуют в твердой фазе, во-вторых, исключить операцию отмывки от анионов, так как анионом является ион карбоната, который взаимодействует с исходными компонентами, а избыток удаляется в виде газовой фазы. Кроме того, образующиеся карбонат цинка являются структурирующей добавкой, улучшающей диффузионные характеристики конечного продукта. При этом адсорбционные свойства конечного продукта увеличиваются.

Наряду с этим используемые компоненты имеют более низкую стоимость, чем нитраты и хлориды циркония (в частности, в настоящее время стоимость оксинитрата циркония 2400 руб/кг, оксихлорида циркония 2700 руб/кг, основного карбоната циркония 230 руб/кг).

Использование в качестве вещества взаимодействующего с основным карбонатом циркония и образующего гидроксид циркония оксида и/или гидроксида цинка позволяет значительно увеличить динамическую активность получаемого поглотителя.

Данный результат достигается за счет того, что оксид и/или гидроксид цинка являются более дисперсными продуктами и более активно взаимодействуют с основным карбонатом циркония с образованием гидроксида циркония и карбоната цинка.

Способ осуществляется следующим образом.

Смешивают порошок основного карбоната циркония и порошок одного из следующих веществ: окиси или гидроокиси цинка при мольном соотношении цинка к цирконию от 1:0,33 до 1:2,5. Смешение осуществляют в любом пригодном для смешения порошкообразных материалов, например, в двухлопастном смесителе, в течение 1,0-1,5 часов.

В процессе смешения компоненты взаимодействуют друг с другом с образованием твердой фазы гидроксида циркония.

Полученный продукт смешивают с обычным связующим, например поливиниловым спиртом или поливинилацетатной эмульсией, в количестве 1-3% в расчете на сухие вещества.

Затем осуществляют формование гранул любым известным способом (шнекование, таблетирование, закатка), полученные гранулы рассеивают и подвергают сушке при температуре 20-110°С.

При смешении порошка основного карбоната циркония и порошков окиси или гидроокиси цинка протекает твердофазная химическая реакция с образованием гидроксида циркония и карбоната цинка.

ZrO(ОН)СО3+Zn(OH)2=ZrO(OH)2+ZnCO32О

ZrO(ОН)СО3+ZnO+Н2О=ZrO(OH)2+ZnCO3

Образующийся карбонат цинка является высокодисперсным, нерастворимым в воде веществом, который оказывает структурирующее действие и улучшает кинетические характеристики поглотителя и повышает стабильность работы поглотителя в циклических условиях.

Пример 1

150 г основного карбоната циркония, содержащего 0,52 моля ZrO2, смешивают с 126 г ZnO, содержащего 1,56 моля ZnO перемешивают в течение 60 мин, добавляют 64,82 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 2

180 г основного карбоната циркония, содержащего 0,62 моля ZrO2, смешивают с 101 г ZnO, содержащего 1,24 моля ZnO, перемешивают в течение 40-60 мин, добавляют 29,64 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 3

186 г основного карбоната циркония, содержащего 0,64 моля ZrO2, смешивают с 85 г ZnO, содержащего 1,05 моля ZnO, перемешивают в течение 40-60 мин, добавляют 18,75 г 5% раствора поливинилового спирта, перемешивают в течении 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 4

250 г основного карбоната циркония, содержащего 0,87 моля ZrO2, смешивают с 71,0 г ZnO, содержащего 0,87 моля ZnO, перемешивают в течение 60 мин, добавляют 51,57 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 5

250 г основного карбоната циркония, содержащего 0,87 моля ZrO2, смешивают с 44,0 г ZnO, содержащего 0,54 моля ZnO, перемешивают в течение 60 мин, добавляют 20,0 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 6

250 г основного карбоната циркония, содержащего 0,87 моля ZrO2, смешивают с 36,0 г ZnO, содержащего 0,44 моля ZnO, перемешивают в течение 60 мин, добавляют 25,5 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 7

250 г основного карбоната циркония, содержащего 0,87 моля ZrO2, смешивают с 28,2,0 г ZnO, содержащего 0,35 моля ZnO, перемешивают в течение 60 мин, добавляют 33,87 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 8

250 г основного карбоната циркония, содержащего 0,87 моля ZrO2, смешивают с 144,0 г Zn(OH)2, содержащего 1,45 моля ZnO, перемешивают в течение 60 мин, добавляют 10,2 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 9

250 г основного карбоната циркония, содержащего 0,87 моля ZrO2, смешивают с 125,0 г Zn(OH)2, содержащего 0,87 моля ZnO, перемешивают в течение 60 мин, добавляют 13,7 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 10

250 г основного карбоната циркония, содержащего 0,87 моля ZrO2, смешивают с 43,0 г Zn(OH)2, содержащего 0,435 моля ZnO, перемешивают в течение 60 мин, добавляют 27,85 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Испытания полученного заявляемым способом регенерируемого поглотителя диоксида углерода осуществлялись на установке, имитирующей условия работы поглотителя для очистки воздуха герметичного объекта, регенерация поглотителя осуществлялась продувкой водяным паром.

Условия проведения испытаний:

- объем навески поглотителя 150 см3;

- расход воздуха через слой поглотителя (16±1) л/мин;

- объемная доля диоксида углерода в газовоздушной среде (0,3±0,02)%;

- температура газовоздушной среды (20-65)°С;

- относительная влажность воздуха (30-80)%.

Результаты испытаний поглотителей представлены в таблице.

Таблица
Примеры получения Соотношение Zn/Zr Динамическая активность по СО2, л/л
По примеру 1 1/0,33 3,8
По примеру 2 1/0,50 4,9
По примеру 3 1/0,62 5,6
По примеру 4 1/1,00 6,9
По примеру 5 1/1,62 8,5
По примеру 6 1/2,00 7.5
По примеру 7 1/2,5 5,9
По примеру 8 1/0,60 5,3
По примеру 9 1/1,00 6,2
По примеру 10 1/2,00 6,5

Изобретение позволяет увеличить динамическую активность поглотителя на основе гидроксида циркония по диоксиду углерода в 1,5-2,0 раза по сравнению с прототипом.

1. Способ получения регенерируемого поглотителя диоксида углерода, включающий взаимодействие соли циркония и вещества, образующего гидроксид циркония, где в качестве соли циркония используют основной карбонат циркония, отличающийся тем, что в качестве вещества, образующего гидроксид циркония, используют оксид и/или гидроксид цинка.

2. Способ по п.1, отличающийся тем, что взаимодействие компонентов осуществляют при мольном соотношении металла цинка к цирконию от 1:0,33 до 1:2,5, предпочтительно от 1:1,0 до 1:2,0.



 

Похожие патенты:

Изобретение относится к области защиты от отравляющих веществ. .

Изобретение относится к области сорбционной очистки водных растворов. .

Изобретение относится к получению неорганических сорбентов и может быть использовано при сорбционном концентрировании микроколичеств легких, тяжелых металлов и гидролизующихся элементов из водно-солевых растворов и для очистки радиоактивно загрязненных сточных вод с низким уровнем активности.
Изобретение относится к области охраны окружающей среды и касается прежде всего адсорбента комплексного действия, пригодного для получения фильтрующего материала как для глубокой очистки сточных вод, так и для комплексной очистки отработанных минеральных масел.

Изобретение относится к сорбентам для очистки атмосферного воздуха. .
Изобретение относится к области очистки вод хозяйственно-бытового и технического назначения от железосодержащих примесей и получению фильтрующих материалов для этих целей.

Изобретение относится к сорбционным материалам для удаления ионов тяжелых металлов из грунтовых вод, поверхностных водных систем и может найти применение также на предприятиях химической и металлургической промышленности, использующих травильные и гальванические технологии.
Изобретение относится к способам получения сорбентов может и быть использовано для извлечения металлов из водных растворов. .
Изобретение относится к области получения неорганических сорбентов, используемых в химии, экологии, фармакологии, медицине. .

Изобретение относится к золь-гель технологии получения сорбентов на основе гелей оксигидратов, преимущественно циркония, иттрия и лантана
Изобретение относится к области фильтрующих материалов

Изобретение относится к составам твердых сорбентов, предназначенных для удаления жировых или масляных частиц или подобных плавающих веществ, для поддержания в надлежащем состоянии или очистки поверхности водоемов от нефти и подобных плавающих материалов отделением и удалением этих материалов путем сорбционной очистки

Изобретение относится к области аналитической химии, химической технологии, экологии, в частности к способам получения сорбционных материалов и их использованию для извлечения из водных растворов ионов различных металлов
Изобретение относится к очистке промышленных газов от сероводорода

Изобретение относится к области неорганической химии и газоочистки и может быть использовано в процессах каталитической очистки газов от озона
Изобретение относится к удалению оксианионов тяжелых металлов из водных потоков

Изобретение относится к каталитическим композициям для улавливания оксидов азота, содержащихся в газовом потоке
Наверх