Высокопрочная немагнитная композиционная сталь

Изобретение относится к области металлургии, а именно к составам высокопрочной немагнитной коррозионно-стойкой композиционной стали, используемой в машиностроении, авиастроении, специальном судостроении, приборостроении и при создании высокоэффективной буровой техники. Сталь содержит углерод, кремний, марганец, хром, никель, азот, ниобий, молибден, ванадий, нитрид циркония, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,04-0,12, кремний 0,10-0,60, марганец 5,0-12,0, хром 19,0-21,0, никель 4,0-9,0, молибден 0,5-1,5, ванадий 0,10-0,55, ниобий 0,03-0,30, азот 0,4-0,7, нитрид циркония 0,03-1,00, железо и неизбежные примеси остальное. Нитрид циркония содержится в виде частиц с наноразмерной дисперсностью. Повышаются прочностные свойства стали при одновременном повышении показателей пластичности и вязкости. 1 з.п. ф-лы, 2 табл.

 

Изобретение относится к области металлургии и может быть использовано в машиностроении, авиастроении, специальном судостроении, приборостроении и для создания высокоэффективной буровой техники.

Известна немагнитная сталь следующего химического состава, мас.%: углерод 0,01-0,05; хром 21,0-24,0; марганец 12,0-15,0; никель 1,0-8,0; азот 0,65-0,80; молибден 0,5-1,0; ванадий 0,25-1,0; кальций 0,0015-0,020; железо остальное (Авт. свид. СССР №1225876, М. кл. С22С 38/58, опубл. 23.04.1986).

Недостатком стали является недостаточно высокие характеристики пластичности и вязкости и развитие межкристаллитной коррозии за счет наличия в стали ванадия, который соединяясь с азотом и углеродом образует нитриды и карбиды ванадия, выделяющиеся при затвердевании по границам аустенитных зерен. Кроме этого, ванадий как ферритообразующий элемент способствует выделению ферромагнитной фазы (δ - феррит), повышая магнитную проницаемость.

Наиболее близкой по технической сущности и достигаемому результату является высокопрочная немагнитная коррозионно-стойкая свариваемая сталь следующего химического состава, мас.%: углерод 0,04-0,9, кремний 0,10-0,60, марганец 5,0-12,0 хром 19,0-21,0, никель 4,5,0-9,0, молибден 0,5-1,5; ванадий 0,10-0,55; кальций 0,005-0,010; ниобий 0,03-0,30, азот 0,40-0,70; неизбежные примеси и железо остальное. При этом для значений концентраций легирующих элементов выполняется условие:

[Ni]+0,1[Mn]-0,01[Mn]2+18[N]+30[C]/[Cr]+l,5[Mo]+0,48[Si]+2,3[V]+l,75[Nb]=0,70-0,90,

где [N], [С], [Si], [Mn], [Ni], [Cr], [Mo], [V], [Nb] - концентрация в стали азота, углерода, кремния, марганца, никеля, хрома, молибдена, ванадия и ниобия соответственно, выраженная в массовых процентах. Соотношение содержания углерода к содержанию азота равно 0,05-0,15.

Кроме того, сталь обладает развитой субзеренной структурой после горячей пластической деформации при температуре 1000-1050°С с обжатием 50-80% и последующим охлаждением в воде до комнатной температуры.

Сталь обладает мелкозернистой аустенитной структурой после закалки в воде от температуры 1030-1070°С (Патент РФ №2205889, М. кл. С22С 38/58, опубл. 06.10.2003, прототип).

Недостатком указанной стали являются недостаточно высокие характеристики пластичности и вязкости стали, так как наличие сильных карбидо- и нитридообразующих элементов ниобия и ванадия приведет к выделению крупноразмерных как карбидов, так и нитридов ниобия и ванадия по границам аустенитного зерна при затвердевании стали, что снизит характеристики пластичности и вязкости.

Задачей, решаемой изобретением, является получение стали, обладающей повышенными прочностными свойствами с высокими показателями пластичности и вязкости.

Указанная задача решается тем, что высокопрочная немагнитная коррозионно-стойкая композитная сталь, включающая углерод, кремний, марганец, хром, никель, азот, ниобий, молибден, ванадий, железо, дополнительно содержит нитрид циркония при следующем соотношении компонентов, мас.%:

Углерод 0,04-0,12
Кремний 0,10-0,60
Марганец 5,0-12,0
Хром 19,0-21,0
Никель 4,0-9,0
Молибден 0,5-1,5
Ванадий 0,10-0,55
Ниобий 0,03-0,30
Азот 0,4-0,7
Нитрид циркония 0,03-1,00
Железо и примеси остальное

Сталь содержит нитрид циркония в виде частиц с наноразмерной дисперсностью.

Введение в состав стали мелкодисперсных нитридов циркония с наноразмерной дисперсностью позволит образовать большое количество центров кристаллизации, равномерно распределенных в объеме металла.

В процессе затвердевания стали химически стойкие частицы нитрида циркония, находясь в высокоазотистом расплаве обладают повышенной устойчивостью к диссоциации и будут являться инокуляторами, центрами кристаллизации аустенитных зерен, что существенно измельчит первичное аустенитное зерно, увеличит площадь границ аустенитных зерен, а также увеличит скорость затвердевания отливок. Это существенно уменьшит количество и увеличит дисперсность карбидов и нитридов ванадия и ниобия, выпадающих по границам аустенитных зерен, что в конечном счете приведет к увеличению прочностных свойств и одновременно показателей пластичности и вязкости.

При содержании в стали мелкодисперсных нитридов циркония в количестве меньшем 0,03 мас.% не происходит увеличения прочностных свойств, так как не происходит достаточного измельчения зерна и стабилизации границ зерен.

При содержании нитридов циркония более 1,00 мас.% происходит ухудшение характеристик пластичности и вязкости, так как нитриды циркония начинают выделяться в избыточном количестве по границам зерен.

Таким образом, техническим результатом изобретения является повышение прочностных свойств стали при одновременном повышении показателей пластичности и вязкости.

Пример.

Выплавку стали производили в открытой основной индукционной печи вместимостью 160 кг методом сплавления нержавеющих азотсодержащих отходов и чистых ферросплавов. Азот вводили в состав стали азотированными отходами и азотированными ферросплавами хрома и марганца.

Нитрид циркония получали методом СВС в режиме фильтрационного горения. После азотирования спек нитрида циркония дробили и измельчали до фракции менее 100 нм в шаровой мельнице в течение 5 минут. Нитрид циркония вводили в металлических капсулах на струю металла при выпуске плавки в ковш. Металл разливали сверху в слитки массой 130 кг диаметром 150 мм. Слитки нагревали в газовой печи до температуры 1175-1220°С и ковали при температуре не ниже 1050°С на прутки сечением 70×70 мм. Из прутков изготавливали продольные образцы на растяжение и ударный изгиб, которые подвергали термообработке закалкой в воду с 1050°С.

Структуру металла изучали на металлографическом микроскопе Неофот-2.

Фазовый состав стали определяли на рентгеновском дифрактометре ДРОН-3М.

Механические испытания на растяжение по ГОСТ 1497-80 проводили на универсальной испытательной машине Тип 1958у-10, а испытания на ударный изгиб - на копре КМ-30 по ГОСТ 9454-80.

Результаты химического анализа предлагаемой стали приведены в табл.1.

Результаты испытаний представлены в табл.2.

По результатам испытаний видно, что предлагаемая сталь обладает более высокими прочностными показателями при повышенных характеристиках пластичности и вязкости, что приведет к повышению долговечности изделий из этого металла.

Таблица 1.
Химический состав стали
Плавка Содержание элементов, мас.%
С Si Mn Cr Ni Mo V Nb Са N ZrN S P Fe и примеси
1 0,04 0,10 5,0 19,0 4,0 0,5 0,10 0,03 - 0,4 0,03 0,006 0,018 Ост.
2 0,09 0,30 10,0 20,5 8,0 0,9 0,35 0,10 - 0,55 0,50 0,007 0,019 Ост.
3 0,12 0,58 11,8 21,0 8,9 1,5 0,55 0,30 - 0,69 1,00 0,011 0,020 Ост.
4 0,08 0,25 11,2 20,3 8,73 0,87 0,40 0,20 - 0,57 0,02 0,009 0,17 Ост.
5 0,04 0,40 11,0 19,6 8,5 1,0 0,45 0,15 - 0,70 1,1 0,006 0,018 Ост.
6 прототип 0,4 0,26 11,7 19,9 5,6 1,5 0,37 0,27 0,006 0,51 - 0,004 0,017 Ост.

Таблица 2
Механические свойства и магнитная проницаемость стали
Плавка σB, МПа σ0,2, МПа δ, % ψ, % KCU, МДж/м2 µ, Гс/Э
1 1170 1132 59 78 4,3 1,001
2 1180 1150 53 75 3,8 1,002
3 1200 1160 50 75 3,1 1,001
4 900 850 50 68 1,2 1,004
5 1180 1100 35 50 1,0 1,005
6 прототип 1040 848 32 55 2,2 1,005

1. Высокопрочная немагнитная коррозионностойкая композиционная сталь, содержащая углерод, кремний, марганец, хром, никель, азот, ниобий, молибден, ванадий, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит нитрид циркония при следующем соотношении компонентов, мас.%:

углерод 0,04-0,12
кремний 0,10-0,60
марганец 5,0-12,0
хром 19,0-21,0
никель 4,0-9,0
молибден 0,5-1,5
ванадий 0,10-0,55
ниобий 0,03-0,30
азот 0,4-0,7
нитрид циркония 0,03-1,00
железо и неизбежные примеси остальное

2. Сталь по п.1, отличающаяся тем, что она содержит нитрид циркония в виде частиц с наноразмерной дисперсностью.



 

Похожие патенты:

Изобретение относится к металлургии, в частности к разработке составов легированных аустенитных коррозионно-стойких сталей для атомных энергетических установок с жидкометаллическим теплоносителем.

Изобретение относится к области металлургии и медицины, а именно к коррозионно-стойким хромоникельмолибденовым сталям, применяемым в ортопедической стоматологии для зубного протезирования.
Сталь // 2352681
Изобретение относится к области черной металлургии, а именно к составам сталей, которые могут быть использованы для изготовления деталей машин, работающих в условиях трения.
Изобретение относится к области черной металлургии, а именно к нержавеющим мартенситно-стареющим сталям, используемым для изготовления высоконагруженных деталей.

Изобретение относится к металлургии жаропрочных сплавов с литой структурой на железохромоникелевой основе с карбидным упрочнением и может быть использовано при создании установок высокотемпературного пиролиза для нефтехимических отраслей промышленности.
Сталь // 2347005
Изобретение относится к области черной металлургии, а именно к составам сталей, которые могут быть использованы для изготовления деталей машин, работающих в условиях трения.
Изобретение относится к металлургии, а именно к производству углеродистых и низколегированных сталей повышенной коррозионной стойкости для производства трубопроводов, транспортирующих агрессивные в коррозионном отношении жидкости.
Сталь // 2340700
Изобретение относится к металлургии, а именно к стали, используемой для изготовления износостойких деталей, преимущественно для изготовления бронефутеровок шаровых мельниц и межкамерных перегородок этих мельниц.
Сталь // 2339730
Изобретение относится к области металлургии, а именно к составу стали, используемой в транспортном машиностроении, станкостроении, насосно-компрессорном оборудовании.
Изобретение относится к области черной и цветной металлургии, в частности к переработке хромсодержащих материалов восстановительной плавкой в электропечах, может быть использовано для переработки хромитовых руд, концентратов и алюминийсодержащих отходов цветной металлургии.

Изобретение относится к способу извлечения металлических элементов, в частности металлического хрома, из шлаков, которые содержат оксиды, в частности оксиды хрома в дуговой электропечи.
Изобретение относится к области металлургии и может быть использовано при производстве изделий, к которым предъявляются повышенные требования по прочности и твердости.
Изобретение относится к области металлургии, в частности к производству ферросплавов алюминотермическим процессом. .

Изобретение относится к области металлургии, в частности, к способу переработки концентратов из руды, содержащей оксиды железа, титана и ванадия, и устройству для его осуществления.
Изобретение относится к пирометаллургии, в частности к производству ферромарганца, и позволяет исключить образование отвального шлака при извлечении марганца из руды.

Изобретение относится к области металлургии, в частности к переработке марганцевого сырья плавкой в рудовосстановительных печах. .

Изобретение относится к специальной электрометаллургии и предназначено для получения ферротитана высокого качества из титановой и стальной стружки. .
Изобретение относится к области металлургии тугоплавких редких металлов, а именно к металлургии титана, и может быть использовано при получении ферротитана для производства сплавов на основе титана и конструкционных изделий.

Изобретение относится к металлургии и может быть использовано для производства ферроникеля с различным содержанием никеля из уральских и прочих окисленных никелевых руд.
Изобретение относится к порошковой металлургии, в частности к составам износостойких спеченных сплавов на основе железа. .
Наверх