Пиксельная функционально-интегрированная структура детектора

Изобретение относится к микроэлектронике, и в частности к созданию матричных детекторов релятивистских частиц. Наиболее чувствительными детекторами релятивистских частиц являются пиксельные структуры, построенные на биполярном транзисторе. Технический результат - повышение плотности компоновки пиксельных структур детекторов релятивистских частиц за счет функциональной интеграции усилительной транзисторной структуры и чувствительного элемента - первичного преобразователя типа излучение - напряжение, а также упрощение технологии изготовления детекторов релятивистских частиц. Указанный результат достигается тем, что пиксельная функционально-интегрированная структура детектора релятивистских частиц, содержащая в подложке биполярную n-p-n/p-n-p/-типа транзисторную структуру, базовая область которой через резистор подключена к общей шине, коллекторная область подключена к шине питания, а эмиттерная область - к выходному электроду, характеризуется тем, что содержит p-i-n диод, область p/n/-типа проводимости которого совмещена /соединена/ с базовой областью транзистора, область i-типа проводимости совмещена с подложкой, которая имеет омический контакт

n+-/p/-типа проводимости, подключенный к дополнительному источнику напряжения. 3 ил.

 

Изобретение относится к микроэлектронике и, в частности, к созданию матричных детекторов релятивистских частиц.

Известны ячейки детекторов релятивистских частиц, выполненных в виде диодных матриц [1]. Существенным недостатком таких ячеек является низкая чувствительность.

Наиболее близким по технической сущности решением (прототипом) является пиксельная структура детектора частиц, построенная на биполярном транзисторе [2].

Существенными недостатками известных пиксельных структур детекторов релятивистских частиц являются сравнительно невысокая плотность компоновки и сложность технологии.

Техническим результатом настоящего изобретения является повышение плотности компоновки пиксельных структур детекторов релятивистских частиц за счет функциональной интеграции усилительной транзисторной структуры и чувствительного элемента - первичного преобразователя типа излучение - напряжение.

Другим техническим результатом настоящего изобретения является упрощение технологии изготовления детекторов релятивистских частиц.

Эти технические результаты достигнуты в пиксельной функционально-интегрированной структуре детектора релятивистских частиц, содержащей в подложке транзисторную структуру, коллекторная область подключена к шине питания, а эмиттерная область - к выходному электроду, которая содержит p-i-n диод, область p-типа проводимости которого совмещена с базовой областью, область i-типа проводимости совмещена с подложкой, которая имеет омический контакт n+-типа проводимости, подключенный к дополнительному источнику напряжения.

В частном случае базовая область 3 может быть подсоединена через резистор к общей шине, имеющей нулевой потенциал.

Отличия пиксельных функционально-интегрированных структур детектора релятивистских частиц согласно настоящему изобретению заключаются в том, что она содержит p-i-n диод, область p-типа проводимости которого совмещена с базовой областью, область i-типа проводимости совмещена с подложкой, которая имеет омический контакт n+-типа проводимости, подключенный к дополнительному источнику напряжения.

На фиг.1а, б приведены электрические эквивалентные схемы пиксельной функционально-интегрированной структуры детектора релятивистских частиц согласно настоящему изобретению (без резистора и с резистором, подключенным к области соответственно).

Изобретение поясняется приведенными чертежами. На фиг.2 приведены чертежи сечений по ортогональным осям А-А и Б-Б пиксельной функционально-интегрированной структуры детектора релятивистских частиц согласно настоящему изобретению.

На фиг.3 показаны чертежи сечений пиксельной структуры, в которой база n-p-n биполярного транзистора объединена с p-областью p-i-n диода путем электрической связи через омический контакт.

Пиксельная функционально-интегрированная структура детектора релятивистских частиц согласно настоящему изобретению содержит в подложке 1 транзисторную структуру с коллекторной областью 2, базовой областью 3 и эмиттерной областью 4; коллекторная область 2 подключена к шине питания 5; эмиттерная область 4 подключена к выходному электроду 6; p-i-n диод, p+-область которого совмещена с базовой областью 3, i-область совмещена с подложкой 1, которая имеет омический контакт n+-типа проводимости 7, подключенный к электроду 8 дополнительного источника питания (Vcc), резистор R может быть подключен к базовому электроду 9 и общей шине 10.

Пиксельная функционально-интегрированная структура детектора релятивистских частиц согласно настоящему изобретению может быть выполнена в кремневой подложке с концентрацией примесей (1013-1014) см3 с помощью технологии, используемой для изготовления высоковольтных интегральных схем. Концентрация примесей бора в области базы 3 может составлять величину порядка 10 см3, а толщина этой области порядка (0.3-1) мкм. Концентрация примесей фосфора в области эмиттера 4 может составлять величину порядка 1020 см3, а толщина этой области порядка (0.1-0.5) мкм. Омический контакт 9 к подложке 1 может быть выполнен с помощью диффузии фосфора или сурьмы на глубину порядка 0.1 мкм с концентрацией ~ 1019 см3.

Пиксельная функционально-интегрированная структура детектора релятивистских частиц согласно настоящему изобретению представляет собой схему эмиттерного повторителя с первичным преобразователем ионизирующего излучения в виде p-i-n диода, области которого совмещены с областями транзисторной структуры. Напряжение питания эмиттерного повторителя может составлять величину (5-10) В, а напряжение на шине 10 дополнительного источника напряжения должна быть (50-100) В. Высокое напряжение положительной полярности на шине 10 обеспечивает смещение p-i-n диода в обратном направлении и толщину области пространственного заряда (ее граница на фиг.1 показана пунктиром) порядка 100 мкм. Релятивистские частицы, попадая в область пространственного заряда p-i-n диода, генерируют электронно-дырочные пары, разделяемые p-i-n диодом, создавая тем самым ионизационный ток. Ионизационный ток протекает через базовую область 3, усиливаясь транзисторной структурой, создает ток эммитера, который регистрируется в цепи выходного электрода 6.

Пиксельная функционально-интегрированная структура детектора релятивистских частиц согласно настоящему изобретению может найти широкое применение при создании матричных интегральных детекторов релятивистских частиц с высокой разрешающей способностью.

ЛИТЕРАТУРА

1. W.Lange at of Contribution to International Conference on Instrumentation for Colliding Beam Physics, 15-21 March 1990, Novosibirsk (to be Published).

2. Мелешко Е.А., Мурашов В.Н., Павлов Д.В., Тарабрин Ю.А., Яковлев Г.В. Координатно-чувствительный детектор. Патент на изобретение №2133524 по заявке №98114584, приоритет от 29.07.98.

Пиксельная функционально-интегрированная структура детектора релятивистских частиц, содержащая в подложке биполярную n-p-n(p-n-p)-типа транзисторную структуру, базовая область которой через резистор подключена к общей шине, коллекторная область подключена к шине питания, а эмиттерная область - к выходному электроду, отличающаяся тем, что содержит p-i-n диод, область p(n)-типа проводимости которого совмещена (соединена) с базовой областью транзистора, область i-типа проводимости совмещена с подложкой, которая имеет омический контакт n+-(p)-типа проводимости, подключенный к дополнительному источнику напряжения.



 

Похожие патенты:

Изобретение относится к твердотельным детекторам ионизирующих излучений. .

Изобретение относится к твердотельным детекторам ионизирующих излучений. .

Изобретение относится к технике измерения рентгеновского и низкоэнергетического гамма-излучения с помощью полупроводниковых детекторов, и может быть использовано в атомной энергетике, геологии, металлургии, в системах экологического контроля, при переработке вторичного сырья, таможенном контроле и криминалистике.

Изобретение относится к технике регистрации излучений, а именно к алмазным детекторам, предназначенным для преобразования однократных или редко повторяющихся импульсов ионизирующих излучений, в частности мягкого рентгеновского или фотонного излучения в электрические аналоги.

Изобретение относится к полупроводниковым приборам и может найти применение для регистрации ионизирующих излучений и заряженных частиц в ядерной физике, а также при создании цифровых диагностических аппаратов, регистрирующих заряженные частицы и гамма-кванты.

Изобретение относится к области атомного приборостроения и микроэлектроники и может быть использовано, в частности, при создании координатных чувствительных детекторов релятивистских частиц, рентгеновского и нейтронного излучения.

Изобретение относится к полупроводниковым приборам, предназначенным для измерения электромагнитных излучений, работающих в диапазоне длин волн от ультрафиолетового до гамма-излучений.

Изобретение относится к полупроводниковым детекторам ионизирующего излучения и может найти применение для регистрации излучений в ядерной физике, а также при создании цифровых аппаратов, регистрирующих заряженные частицы и гамма кванты.

Изобретение относится к полупроводниковым приборам, в частности к детекторам частиц и излучений, и может быть использовано при решении ряда фундаментальных физических задач, в том числе при исследовании и регистрации редких событий, а также в физике высоких энергий для координатных измерений.

Изобретение относится к области приборостроения и может найти применение для измерения основных параметров нейтронных потоков

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц

Изобретение относится к области детектирования ионизирующих излучений с использованием полупроводниковых устройств и может быть использовано в научно-исследовательском оборудовании и средствах радиационной защиты

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. МОП диодная ячейка монолитного детектора излучений содержит МОП транзистор, шину высокого положительного (отрицательного) напряжения питания и выходную шину, при этом для повышения качества детектирования, т.е. спектральной чувствительности и линейности усиления детектора, МОП транзистор является обедненным транзистором n(p) типа проводимости (т.е. имеет встроенный канал), при этом его подзатворная область подсоединена к общей шине питания, сток к выходной шине, а затвор соединен с анодом (катодом) диода и с первым выводом резистора, катод (анод) диода подсоединен к шине высокого положительного (отрицательного) напряжения питания, второй вывод резистора подсоединен к шине отрицательного (положительного) напряжения смещения. Также предложена конструкция (функционально интегрированная структура) МОП диодной ячейки монолитного детектора излучений. 2 н. и 6 з.п. ф-лы, 10 ил.

Изобретение может найти применение для регистрации излучений в ядерной физике, в физике высоких энергий, а также при создании цифровых рентгеновских аппаратов, преимущественно маммографов. Рабочий объем детектора выполнен из пластины полуизолирующего монокристаллического полупроводникового материала, например арсенида галлия, на которой сформированы конденсаторы, у которых первая обкладка лежит непосредственно на рабочем объеме. Поверх конденсаторов нанесен слой разделительного диэлектрика, а электронные ключи на полевых транзисторах созданы на слое разделительного диэлектрика, на котором также создана вся разводка схем, включая шины, соединяющие затворы транзисторов (лежащие на разделительном диэлектрике) вдоль строк матрицы, а также шины, соединяющие стоки транзисторов вдоль столбцов, причем в слое диэлектрика сформированы окна, заполненные металлом, через которые осуществляется соединение первых обкладок конденсаторов с истоками транзисторов и вторых обкладок конденсаторов с земляными шинами в каждом элементе матрицы. Изобретение обеспечивает возможность расширения спектра полупроводниковых материалов, пригодных для использования в качестве рабочего объема детектора. 1 ил.

Изобретение относится к области полупроводниковых оптоэлектронных устройств, в частности к фотодетекторам с высокой эффективностью регистрации света. Ячейка для фотоэлектронного умножителя на основе кремния согласно изобретению содержит первый слой (2) первого типа проводимости, второй слой (3) второго типа проводимости, сформированный на первом слое (2), причем первый слой (2) и второй слой (3) формируют первый p-n-переход. И отличается тем, что ячейка дополнительно обработана с помощью этапа ионной имплантации, причем параметры ионной имплантации выбраны так, что благодаря повреждению кристаллической решетки, вызванному имплантацией, длина поглощения инфракрасного света с длиной волны в интервале от ~800 нм до 1000 нм снижена, в частности снижена по меньшей мере в 3 раза, более конкретно снижена по меньшей мере в 5 раз. Изобретение обеспечивает создание ячейки для фотоэлектронного умножителя на основе кремния и фотоэлектронного умножителя на основе кремния, содержащего множество ячеек, в которых оптические помехи между ячейками значительно снижены без значительного снижения эффективности оптического детектирования, при этом ячейки для фотоэлектронного умножителя на основе кремния сформированы с увеличенной эффективностью оптического детектирования для длин волн больше ~800 нм. 5 н. и 12 з.п. ф-лы, 10 ил.

Изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию (э.д.с). Согласно изобретению предложен кремниевый монокристаллический многопереходный фотоэлектрический преобразователь оптических и радиационных излучений, содержащий диодные ячейки с расположенными в них перпендикулярно горизонтальной светопринимающей поверхности вертикальными одиночными n+-p--p+(p+-n--n+) переходами и расположенными в диодных ячейках параллельно к светопринимающей поверхности горизонтальными n+-p-(p+-n-) переходами, причем все переходы соединены в единую конструкцию металлическими катодными и анодными электродами, расположенными соответственно на поверхности областей n+(p+) типа вертикальных одиночных n+-p--p+(p+-n--n+) переходов, при этом он содержит в диодных ячейках дополнительные вертикальные n+-p-(p+-n-) переходы, причем их области n+(p+) типа подсоединены соответственно областями n+(p+) типа n+-p-(p+-n-) горизонтальных переходов к областям - n+(p+) типа вертикальных одиночных n+-p--p+(p+-n--n+) переходов, при этом на его нижней и боковых поверхностях расположен слой диэлектрика толщиной менее длины пробега радиационных частиц в диэлектрике, на поверхности которого размещен слой радиоактивного металла толщиной, равной длине пробега электронов в металле, при этом расстояние между электродами диодных ячеек не превышает 2-х длин пробега радиационных частиц. Также предложен способ изготовления описанного выше кремниевого монокристаллического многопереходного фотоэлектрического преобразователя оптических и радиационных излучений. Изобретение обеспечивает повышение КПД преобразователей энергии излучения в электрическую энергию, уменьшение их веса на единицу площади и расширение области их применения. 2 н.п. ф-лы, 4 ил.

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений. Биполярная ячейка координатного фотоприемника - детектора излучений может использоваться в современных системах дальнометрии, управления неподвижными и движущимися объектами, зондирования облачности и контроля рельефа местности, оптических линий связи. Технический результат достигается за счет применения новой электрической схемы, в которой имеется собирающий ионизационный ток p-i-n-диод, а также 2-эмиттерный биполярный n-p-n (p-n-p)транзистор, первый эмиттер которого подключен соответственно к первой выходной адресной шине, а второй - ко второй выходной адресной шине, а база биполярного транзистора через резистор подключена к шине напряжения смещения, а коллектор - к шине питания. При этом данная электрическая схема реализуется в конструкции интегральной схемы, в которой функционально совмещены высоковольтный p-i-n-диод и низковольтный усиливающий ионизационный ток биполярный транзистор. 2 н.п. ф-лы, 2 ил.

Изобретение относится к полупроводниковым координатным детекторам ионизирующих частиц. В емкостной МОП диодной ячейке фотоприемника-детектора излучений применена новая электрическая схема, в которой используются усилительный обогащенный p-МОП транзистор, конденсатор, p-i-n-диод, поликремниевые резисторы, дополнительные p-МОП и n-МОП транзисторы и оригинальной конструкции ячейки координатного фотоприемника-детектора. Также использована функционально-интегрированная структура p-i-n-диода, в которой расположена емкость, разделяющая высокое напряжение, приложенное к p-i-n-диоду, и низкое напряжение питания для КМОП электронных схем. Это позволяет увеличить надежность работы, чувствительность и координатную точность фотоприемника-детектора излучений. 4 ил.
Наверх