Способ измерения s-параметров транзисторов свч в линейном режиме

Изобретение относится к технике измерения на СВЧ и может быть использовано для измерения S-параметров пассивных и активных четырехполюсников СВЧ. Способ измерения S-параметров транзисторов СВЧ в линейном режиме заключается в следующем: выделяют падающие и отраженные волны напряжений от устройства, содержащего собственно транзистор и держатель транзистора, измеряют отношения падающих и отраженных волн при изменении разности фаз между падающими волнами в диапазоне 0°-360°. При этом с помощью 12-полюсных рефлектометров измеряют только комплексные коэффициенты отражения на входе и выходе упомянутого устройства для двух значений разности фаз между падающими волнами. Затем транзистор удаляют из упомянутого устройства и измеряют комплексные коэффициенты отражения на входах коаксиально-полосковых переходов держателя транзистора. Далее из схемы удаляют держатель транзистора, измеряют комплексные коэффициенты отражения выходов 12-полюсных рефлектометров и отношение падающих волн напряжений генератора. Полученные системы уравнений решают относительно неизвестных S-параметров испытуемого транзистора и определяют S-параметры данного транзистора. Технический результат - уменьшение времени измерения и повышение точности измерения S-параметров транзисторов СВЧ. 1 ил.

 

Изобретение относится к технике измерения на СВЧ и может быть использовано для измерения S-параметров пассивных и активных четырехполюсников СВЧ.

Известен способ измерения S-параметров транзисторов СВЧ [1], при котором измеряют падающие и отраженные от транзистора волны напряжений при изменении разности фаз между падающими волнами от 0° до 360° и определяют S-параметры как центры замкнутых контуров, вычерчиваемых в соответствии с уравнениями вида bi/ai=Sii+Sij(ai/ai), i, j=1, 2 и bi/aj=Sij+Sii(ai/aj), i, j=1, 2.

Недостатками известного способа является то, что процесс измерения требует длительного времени и измеренные S-параметры транзистора имеют низкую точность. Один из указанных недостатков связан с тем, что для построения четырех замкнутых контуров необходимо получить большой массив измеренных отношений падающих и отраженных волн при изменении фаз между падающими волнами в диапазоне 0°-360°, второй недостаток связан с тем, что измеряются не S-параметры транзистора, а измеряются S-параметры устройства, содержащего собственно транзистор и держатель транзистора.

Целью заявляемого способа является уменьшение времени измерения и повышение точности измерения S-параметров транзистора.

Поставленная цель достигается тем, что в известном способе измерения S-параметров, по которому выделяют падающие и отраженные от устройства, содержащего собственно транзистор и держатель транзистора, волны напряжений и измеряют отношения падающих и отраженных волн при изменении разности фаз между падающими волнами в диапазоне 0°-360°, согласно изобретению выделяют падающие и отраженные волны напряжений от устройства, содержащего собственно транзистор и держатель транзистора, и измеряют только комплексные коэффициенты отражения на входе и выходе устройства, содержащего держатель транзистора и собственно транзистор, для двух значений разности фаз между падающими волнами, затем транзистор удаляют из устройства и измеряют комплексные коэффициенты отражения на входах коаксиально-полосковых переходов держателя транзистора, полученные системы уравнений решают относительно неизвестных S-параметров транзистора и определяют S-параметры транзистора.

Работа заявляемого способа поясняется структурной электрической схемой устройства, представленной на чертеже.

Сигнал СВЧ-генератора 1 подается на вход делителя мощности 3, с выхода делителя мощности сигналы через циркуляторы 2 и 4 подаются на два измерительных канала. Первый канал содержит переменный фазовращатель 5, переменный аттенюатор 8, направленный ответвитель 10, измеритель мощности 11, вентиль 14 и 12-полюсный рефлектометр 16. Второй канал содержит переменный аттенюатор 9, направленный ответвитель 12, измеритель мощности 13, вентиль 15 и 12-полюсный рефлектометр 20. Выходы 12-полюсных рефлектометров 16 и 20 соединены с входами коаксиально-полосковых переходов 17 и 19 держателя транзистора, выход коаксиально-полоскового перехода 17 соединен с входом транзистора СВЧ 18, выход коаксиально-полоскового перехода 19 соединен с выходом транзистора 18.

Процесс измерения состоит из трех этапов. На первом этапе измеряются комплексные коэффициенты отражения на входе и выходе устройства, содержащего держатель транзистора (коаксиально-полосковые переходы и прижимные контакты) и собственно транзистор СВЧ, при этом формируется система уравнений для определения S-параметров устройства. На втором этапе измеряются комплексные коэффициенты отражения коаксиально-полосковых переходов, при этом формируется система уравнений для определения S-параметров коаксиально-полосковых переходов. На третьем этапе измеряется отношение падающих волн напряжений генератора и комплексные коэффициенты отражения выходов 12-полюсных рефлектометров. После проведенных измерений вычисляются S-параметры транзистора СВЧ. На первом этапе создается линейный режим работы транзистора, при этом мощность сигнала генератора aг1, которая регулируется переменным аттенюатором 8 и контролируется измерителем мощности 11, соответствует линейному режиму работы. Фаза сигнала генератора aг1 устанавливается переменным фазовращателем в начальное положение φ0. Мощность сигнала генератора аг2, которая регулируется переменным аттенюатором 9 и контролируется измерителем мощности 13, также соответствует линейному режиму работы транзистора. 12-полюсными рефлектометрами [2] измеряются комплексные коэффициенты отражения. Затем фаза сигнала генератора aг1 изменяется переменным фазовращателем 5 до значения φ1 и 12-полюсными рефлектометрами снова измеряются комплексные коэффициенты отражения.

После этого переменным аттенюатором мощность сигнала генератора аг2 устанавливается равной нулю, и 12-полюсным рефлектометром 16 измеряется комплексный коэффициент отражения. На основе проведенных измерений формируется система уравнений для определения S-параметров устройства, содержащего держатель транзистора (коаксиально-полосковые переходы и прижимные контакты) и собственно транзистор СВЧ:

где Гвx1(φ0), Гвx1(φ1), Гвх2(φ0), Гвх2(φ1) - измеренные комплексные коэффициенты отражения в сечениях 1-1 и 2-2 для различных значений фаз сигнала aг1, Гвх1 - измеренный комплексный коэффициент отражения в сечениях 1-1 при наличии сигнала aг1 и отсутствии сигнала аг2, S11, S22, S12, S21 - S-параметры устройства, содержащего держатель транзистора (коаксиально-полосковые переходы и прижимные контакты) и собственно транзистор СВЧ, Г1, Г2 - комплексные коэффициенты отражения от выходов 12-полюсных рефлектометров, aг2/aг1, aг1/aг2 - отношение волн напряжений, падающих на вход и выход устройства, содержащего держатель транзистора (коаксиально-полосковые переходы и прижимные контакты) и собственно транзистор СВЧ.

На втором этапе транзистор удаляется из схемы, на выходах коаксиально-полосковых-переходов держателя транзистора создаются поочередно режимы холостого хода и короткого замыкания и 12-полюсными рефлектометрами измеряются комплексные коэффициенты отражения, при этом формируется система уравнений для определения S-параметров коаксиально-полосковых переходов

где Гвx1x, Гвx2x, Гвх1кз, Гвх2кз - измеренные комплексные коэффициенты отражения в сечениях 1-1 и 2-2 для режимов холостого хода и короткого замыкания на выходе коаксиальо-полосковых переходов, , , , , , , - S-параметры коаксиально-полосковых переходов.

S-параметры коаксиально-полосковых переходов определяются из уравнений (6), (7), (8), (9), полагая, что S-матрицы коаксиально-полосковых переходов унитарны:

, ,

, ,

На третьем этапе из схемы удаляется устройство, содержащее держатель транзистора (коаксиально-полосковые переходы и прижимные контакты) и собственно транзистор СВЧ, выходы 12-полюсных рефлектометров соединяются непосредственно и измеряются комплексные коэффициенты отражения при различных фазах φ0 и φ1 сигнала генератора aг1 и наличие сигнала генератора аг2, затем поочередно измеряются комплексные коэффициенты отражения при наличии сигнала aг1 и отсутствии сигнала аг2 и при наличии сигнала аг2 и отсутствии сигнала aг1. На основе проведенных измерений формируется система уравнений для определения отношения падающих волн аг2/aг1 и определения коэффициентов отражений выходов 12-поллюсных рефлектометров:

Из системы уравнений (10), (11), (12), (13) определяем отношения падающих волн напряжений, имеем

Определим S-параметры четырехполюсников из уравнений (10), (11), (12), (13), которые преобразуем сначала к виду

Вычтем из уравнений (16) и (17) уравнение (20), получим систему уравнений для определения параметров S12 и S22, решая которую, получаем параметры S12 и S22:

где ,

,

Зная параметры S12 и S22, определяем параметры S11 и S21 из уравнений (18) и (19):

где А=Гвх2(φ0)Г1-S22Г1,

,

C=Гвх2(φ0),

А1вх2(φ1)Г1-S22Г1,

С1вх2(φ1).

Зная S-параметры, определяем Т-параметры устройства, содержащего держатель транзистора (коаксиально-полосковые переходы и прижимные контакты) и собственно транзистор СВЧ, и Т-параметры коаксиально-полосковых переходов (T1 и Т2), затем определяем Т-параметры транзистора (Тт) из уравнения:

Зная Т-параметры транзистора, определяем S-параметры транзистора по формулам

, , ,

Список использованных источников

1. Shamsur R. Mazumder and P.D. van der Pulie. «Two-Signal» Method of Measuring the Large-Signal S-Parameter of Transistors // IEEE Trans. On Microwave Theory and Techn. - 1978. - V.MTT - 26. - №6. - p.417-420.

2. Петров В.П., Рясный Ю.В., Журавлева О.Б., Пологрудов В.П. Анализ методов калибровки 12-полюсного рефлектометра // Измер. техн. - 1985. - №10. - с.40-41.

Способ измерения S-параметров транзисторов СВЧ в линейном режиме, по которому выделяют падающие и отраженные волны напряжений от устройства, содержащего собственно транзистор и держатель транзистора, измеряют отношения падающих и отраженных волн при изменении разности фаз между падающими волнами в диапазоне 0-360°, отличающийся тем, что при помощи 12-полюсных рефлектометров измеряют только комплексные коэффициенты отражения на входе и выходе упомянутого устройства для двух значений разности фаз между падающими волнами, затем транзистор удаляют из упомянутого устройства и измеряют комплексные коэффициенты отражения на входах коаксиально-полосковых переходов держателя транзистора, далее из схемы удаляют держатель транзистора, измеряют комплексные коэффициенты отражения выходов 12-полюсных рефлектометров и отношение падающих волн напряжений генератора, полученные системы уравнений решают относительно неизвестных S-параметров испытуемого транзистора и определяют S-параметры данного транзистора.



 

Похожие патенты:

Изобретение относится к области радиоизмерений и может быть использовано при контроле амплитудно-частотных характеристик различных радиотехнических блоков. .

Изобретение относится к области измерения электрических величин и может быть использовано в производстве существующих и новых поглощающих материалов типа углепластиков, применяется в СВЧ-диапазоне, а также для контроля электрических параметров диэлектрической проницаемости и тангенса угла диэлектрических потерь.

Изобретение относится к области радиоизмерений и предназначено для визуальной оценки степени изменения формы спектра случайного сигнала при прохождении его через четырехполюсник с частотно-зависимыми параметрами.

Изобретение относится к области радиоизмерений и может быть использовано при контроле различных СВЧ четырехполюсников, содержащих преобразование частоты. .

Изобретение относится к области радиоизмерений и может быть использовано при построении измерителей уровня частотных искажений, вносимых частотно-зависимыми устройствами, например усилителями аудиосигналов.

Изобретение относится к области радиоизмерений и может быть использовано при контроле амплитудно-частотных характеристик различных радиотехнических блоков. .

Изобретение относится к области радиоизмерений и может быть использовано при контроле различных устройств СВЧ. .

Изобретение относится к области радиоизмерений и может быть использовано для измерения относительного временного сдвига реальных случайных сигналов на выходах двух каналов стереоусилителя.

Изобретение относится к области электрорадиоизмерений и может найти применение в задачах оценки временного рассогласования, возникающего в каналах стереоусилителя или в других двухканальных трактах прохождения сигналов.

Изобретение относится к области радиоизмерений и предназначено для визуальной оценки степени изменения формы частотного спектра сигнала при прохождении его через четырехполюсник с частотно-зависимыми параметрами.

Изобретение относится к области измерительной техники

Изобретение относится к области радиоизмерений и может быть использовано при измерениях амплитудно-частотных характеристик четырехполюсников СВЧ

Изобретение относится к области радиоизмерений и может быть использовано при измерении комплексных коэффициентов передачи и отражения четырехполюсников СВЧ

Изобретение относится к способу и прибору для характеризации линейных свойств электрического многопортового компонента

Изобретение относится к области медицинской техники, а именно к устройствам для регистрации и оценки отклонения фазового сдвига земного излучения в двух разных пространственных точках

Изобретение относится к способам определения передаточных функций линейных радиоэлектронных систем

Изобретение относится к области микроминиатюризации и технологии радиоэлектронной аппаратуры и может быть использовано для контроля параметров усилителей при их производстве

Изобретение относится к области микроминиатюризации и технологии радиоэлектронной аппаратуры и может быть использовано для контроля параметров усилителей при их производстве
Наверх