Способ обнаружения дефектов в трубопроводах

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для дефектоскопии магистральных трубопроводов, заполненных газом, нефтью, нефтепродуктами под давлением. Технический результат заключается в повышении точности определения местонахождения дефекта в трубопроводе. Для этого в способе, включающем подключение СВЧ-генератора к трубопроводу, использование трубопровода в качестве волновода для излучаемых электромагнитных волн, определение наличия дефекта по СВЧ-сигналу, перемещают приемник СВЧ-сигнала вдоль трассы трубопровода, местоположение дефекта определяют по максимальному значению принимаемого СВЧ-сигнала, координаты дефекта определяют с помощью GPS-приемника. 1 ил.

 

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для дефектоскопии магистральных трубопроводов, заполненных газом, нефтью, нефтепродуктами под давлением.

Известен способ регистрации сигналов акустической эмиссии (АЭ) [1]. Дефект на поверхности металлического изделия, например трубопровода, находящегося за слоем диэлектрика, обнаруживают по параметрам СВЧ-волны, дифрагированной на поверхности изделия на сигналах АЭ, возникающей при истечении газа или иного продукта под давлением через сквозную щель. Схема реализации данного способа регистрации сигналов АЭ содержит СВЧ-генератор и СВЧ-приемник, передающую и приемную антенну, направленные на поверхность контролируемого изделия, которая покрыта слоем диэлектрика.

Способ реализуется следующим образом. Генерируют электромагнитную когерентную поляризованную волну СВЧ-диапазона с помощью генератора. Посредством передающей антенны излучают ее на поверхность контролируемого изделия, принимают дифрагированную электромагнитную волну приемником СВЧ. Электрический сигнал с выхода СВЧ-приемника усиливают, обрабатывают по выбранному параметру и регистрируют в блоке обработки и регистрации сигналов. Сравнивают параметры СВЧ-излучения, полученные ранее при отражении от поверхности изделия без дефектов (а, следовательно, и без присутствия акустоэмиссионных сигналов) с параметрами СВЧ-излучения, измененными при появлении акустических сигналов. По изменению параметров регистрируемого СВЧ-поля отмечают наличие сигналов АЭ и, следовательно, наличие дефекта. Данный способ позволяет дистанционно регистрировать сигналы АЭ, а посредством их и наличие дефекта, однако, он может быть использован лишь для наблюдения за участком контролируемого изделия ограниченной площади, характеризующимся наибольшей вероятностью появления в нем дефектов. Довольно низка и чувствительность метода, во-первых, из-за низкой интенсивности самого акусто-эмиссионного сигнала, а, во-вторых, из-за низкой эффективности дифракции падающего СВЧ-излучения на сигналах АЭ. С другой стороны, поскольку на приемник наряду с полезным сигналом попадает интенсивное излучение, отраженное от металлической поверхности, например трубы, то на фоне этого излучения (одинаковой частоты с полезным сигналом, но с другой фазой) сложно выделить и обработать полезный сигнал из-за низкого соотношения сигнал/шум. На формирование полезного сигнала влияют также интерференционные явления, возникающие за счет проникновения внешнего электромагнитного поля внутрь трубы (дифракция на щели), и дополнительного отражения от внутренней поверхности трубы в сторону щели. В этом случае коэффициент отражения и набег фазы являются сложными функциями как диэлектрической проницаемости покрытия трубы, так и отношения d/λ, где d - толщина стенки трубы, λ - длина зондирующей волны. Поскольку при обнаружении трещины по сигналу АЭ основным информативным параметром является фаза дифрагированной волны, а детекторы, чувствительные к фазе, также чувствительны и к амплитуде сигнала, то при реализации способа большая погрешность в обнаружении фазового сдвига обусловлена затуханием отраженной волны в слое грунта, которым может быть закрыта труба. Сильное влияние на определение местоположения трещины оказывают акустические шумы, метеоусловия и т.д. Вредному влиянию подвержены как передающий, так и приемный каналы предлагаемой диагностической системы, реализующей способ. К недостаткам следует отнести также низкую степень развязки приемного и передающего трактов. Поскольку в способе и в реализующем его устройстве положение приемника и передатчика зафиксировано в пространстве, то зона обзора контролируемой трубы фактически ограничена размером пятна, определяемым диаграммой направленности передающей антенны. Это означает, что способ-прототип не позволяет непрерывно контролировать протяженный участок трубы.

Наиболее близким к предлагаемому является способ обнаружения сквозных дефектов в трубопроводах [2], заключающийся в том, что излучают и принимают электромагнитные волны СВЧ-диапазона, используя трубопровод в качестве волновода для излучаемых электромагнитных волн, а наличие сквозного дефекта определяют по СВЧ-сигналу, принимаемому приемником, удаленным от трубопровода на расстояние L, определяемое из соотношения

где λ - длина электромагнитной СВЧ-волны, λ<1,71D, D - диаметр трубопровода;

Ро - мощность электромагнитной волны;

α - коэффициент ослабления электромагнитной волны в трубопроводе, на щели и в грунте;

G - коэффициент усиления приемника;

Ра min - пороговая мощность приемника;

L - длина непрерывно контролируемого участка трубопровода.

Недостатком этого способа является низкая точность определения местонахождения дефекта в трубопроводе и отсутствие возможности дальнейшего его уточнения.

Цель изобретения - повышение точности определения местонахождения дефекта в трубопроводе.

Для достижения этой цели в предлагаемом способе определения дефектов в трубопроводах, включающем подключение СВЧ-генератора к трубопроводу, использование трубопровода в качестве волновода для излучаемых электромагнитных волн, определение наличия дефекта по СВЧ-сигналу, перемещают приемник СВЧ-сигнала вдоль трассы трубопровода, местоположение дефекта определяют по максимальному значению принимаемого СВЧ-сигнала, координаты дефекта определяют с помощью GPS-приемника.

На чертеже представлена функциональная схема устройства, реализующего определение сквозных дефектов в трубопроводах по данному способу.

Устройство подключается к трубопроводу 1, имеющему дефект 10, через устройство ввода СВЧ-энергии 2 и содержит генератор 3, приемную антенну 4, селективный усилитель 5, детектор 6, индикатор 7, GPS-приемник 8, блок управления 9.

Принцип работы устройства, реализующего данный способ, заключается в следующем.

Создаваемый генератором 3 импульс электромагнитного излучения СВЧ-диапазона посредством устройства ввода 2 возбуждает в трубопроводе 1 электромагнитную волну. Тип и рабочую длину волны λ выбирают с учетом обеспечения приемлемого для практики затухания и стабильности структуры поля (волны) в трубопроводе диаметром D.

При передаче электромагнитной энергии по волноводам в СВЧ-технике принято работать на низшем типе (основном) колебаний (Изюмова Т.И., Свиридов В.Т. Волноводы, коаксиальные и полосовые линии. - М.: Энергия, 1975). Для круглого волновода этим типом является Н11. С учетом диаметра трубы рабочую длину волны λ выбирают из соотношения

1,31D<λ<1,71D,

где D - диаметр трубопровода.

При соблюдении этого условия в волноводе будет существовать только основная волна Н11 и передаваемая энергия не будет перераспределяться на другие типы, менее благоприятные по условиям их распространения в волноводе. По мере распространения по трубопроводу-волноводу часть энергии СВЧ-импульса расходуется на потери в стенках. При прохождении импульса по участку трубопровода-волновода с дефектом часть энергии излучается через щель (дефект) 10 в свободное пространство, являясь информативным сигналом для обнаружения и определения местоположения дефекта-щели. Этот сигнал принимается перемещаемой вдоль трассы приемной антенной 4, усиливается селективным усилителем 5 и подается на детектор 6, после чего подается на устройство управления 9 и выводится на индикатор 7. Максимальное значение СВЧ-сигнала указывает на местоположения дефекта. Координаты дефекта определяются с помощью GPS-приемника 8 и выводятся на индикатор 7.

Таким образом, за счет перемещения приемника СВЧ-сигнала вдоль трассы прокладки трубопровода и наличия GPS-приемника повышается точность определения местонахождения дефекта в трубопроводе.

Источники информации

1. Авторское свидетельство СССР №1578636, МКИ G01N 29/04. Способ регистрации сигналов акустической эмиссии / Бурыхин А.А., Горбунов В.И., Савиков А.А.

2. Патент России 2020467, МПК G01N 27/90. Способ обнаружения сквозных дефектов в трубопроводах / Арзин А.П., Жуков В.Л., Левин С.Ю., Овчинников В.П., Саяпин А.Ф., Фетисов Г.О., Шиян В.П., Штейн Ю.Г.

Способ обнаружения дефектов в трубопроводах, включающий подключение СВЧ-генератора к трубопроводу, использование трубопровода в качестве волновода для излучаемых электромагнитных волн, определение наличия дефекта по СВЧ-сигналу, отличающийся тем, что перемещают приемник СВЧ-сигнала вдоль трассы трубопровода, местоположение дефекта определяют по максимальному значению принимаемого СВЧ-сигнала, координаты дефекта определяют с помощью GPS-приемника.



 

Похожие патенты:

Изобретение относится к электроизмерительной технике и может быть использовано для определения мест повреждения кабеля. .

Изобретение относится к электроэнергетике, в частности к контрольно-измерительной технике и релейной защите, и может быть использовано для определения места однофазного замыкания на землю в воздушных трехфазных электрических сетях с изолированной нейтралью 6-35 кВ.

Изобретение относится к определению короткого замыкания на землю в электрической распределительной сети. .

Изобретение относится к измерительной технике и может быть использовано для определения трассы прокладки и локализации мест повреждений кабелей со сложной конфигурацией прокладки, в частности кабелей, уложенных на наклонных участках змейкой, в случае параллельной прокладки нескольких кабелей и других сооружений при влиянии внешних электромагнитных полей.

Изобретение относится к области измерительной техники и может быть использовано для обеспечения электро- и пожаробезопасности при эксплуатации электроустановок путем надежного отключения потребителей при однофазных повреждениях изоляции.

Изобретение относится к диагностике трехфазных электрических цепей. .

Изобретение относится к релейной защите и автоматике сельских электрических сетей. .

Изобретение относится к электрическим сетям и предназначено для дистанционного отключения участка линии с замыканием на землю (ЗНЗ) и его идентификации в распределительных сетях с изолированной нейтралью.

Изобретение относится к области электроизмерительной техники и может быть использовано при определении направления короткого замыкания в распределительных сетях напряжением 6-35 кВ.

Изобретение относится к электрическим сетям и предназначено для повышения безопасности при возникновении замыканий на землю (ЗНЗ) в электрических сетях с изолированной нейтралью.

Изобретение относится к способам и средствам неразрушающего контроля, реализующим иммерсионный эхо-импульсный метод дефектоскопии, и может быть использовано для контроля качества (сплошности тела и толщины стенки трубы) стальных бесшовных труб в поточных линиях на трубных заводах и перед эксплуатацией.

Изобретение относится к комбинированным методам неразрушающего контроля, а именно к измерению параметров (толщины, структурного состояния, электрофизических и теплофизических свойств) особенно сверхтонких однослойных металлических покрытий и многослойных металлических слоев, нанесенных на диэлектрические основания современными высокими нанотехнологиями.

Изобретение относится к области неразрушающего контроля, а именно к средствам обнаружения дефектов в металлах и сплавах в широком диапазоне толщин при одностороннем бесконтактном доступе, и предназначено для применения в металлургии, машиностроении и др.

Изобретение относится к средствам неразрушающего внутреннего проходного контроля труб, сваренных в плети различной конфигурации, в том числе и с нанесенной на внешнюю поверхность диэлектрической изоляцией и внешними элементами конструкций, например опорами.

Изобретение относится к обнаружению поверхностных дефектов непрерывно-литой металлической заготовки, такой как стальной сляб. .

Изобретение относится к контрольно-измерительной технике и может быть использовано в промышленности для контроля линейных и угловых перемещений, величины вибрации электропроводящих объектов.

Изобретение относится к измерительной технике. .

Изобретение относится к средствам неразрушающего контроля, основанным на вихретоковом методе, и предназначено для дефектоскопии металлоизделий в машиностроении, авиастроении, в железнодорожном транспорте для обнаружения поверхностных и подповерхностных трещин в деталях различных материалов.

Изобретение относится к измерительной технике и может найти применение при конструировании систем виброконтроля габаритных валов роторных машин в энергетике, нефтегазовой промышленности и других областях.
Наверх