Способ изготовления футеровки тепловых агрегатов

Изобретение относится к строительным материалам и предназначено для футеровки тепловых агрегатов набивкой, например сталеразливочных ковшей и нагревательных колодцев. Футеровка тепловых агрегатов содержит кремнеземсодержащий наполнитель, огнеупорную глину, хромомагнезит, силикат-глыбу и композицию для покрытия на основе миксерного графита. Футеровка дополнительно содержит нанокристаллический диоксид кремния и смесь из сажи и фуллеренов при следующем соотношении компонентов, мас.%: кремнеземсодержащий компонент 54-76, огнеупорная глина 9-15, хромомагнезит 8-13, силикат-глыба 2-10, нанокристаллический диоксид кремния 1-6, смесь сажи и фуллеренов 2-7. Полученную смесь затворяют водой и наносят на внутреннюю поверхность сталеразливочного ковша, после чего наносят покрытие на основе миксерного графита, которое дополнительно содержит нанокристаллический диоксид кремния и смесь из сажи и фуллеренов при следующем соотношении компонентов, мас.%: нанокристаллический диоксид кремния 10-15, смесь сажи и фуллеренов 15-25 и миксерный графит - остальное. Технический результат изобретения - увеличение прочности футеровки при сжатии после нагрева до 1500°С и металлостойкости. 3 табл.

 

Изобретение относится к строительным материалам и предназначено для футеровки тепловых агрегатов набивкой и их покрытие, например сталеразливочных ковшей и нагревательных колодцев.

Известен способ получения огнестойкого покрытия, где предусмотрено нанесение на поверхность до пяти слоев композиции, содержащей связующее и наполнитель, с промежуточной сушкой каждого слоя и окончательной термообработкой покрытия при 150°С. Недостаток - низкая прочность из за плохой связи между пятью слоями. (Аналог, АС №2039070).

Известен также способ изготовления футеровки тепловых агрегатов, содержащей в мас.%: кремнеземсодержащий наполнитель 67-79, огнеупорную глину 9-15, хромомагнезит 9-15, силикат-глыбу 2-10. На рабочую поверхность изделий перед сушкой наносят миксерный графит толщиной 1-15 мм. Известная огнеупорная композиция с указанными компонентами и связующим с тонкостью помола до удельной поверхности 2500-3000 см2/г и в приведенных количествах, а также с покрытием рабочей поверхности только миксерным графитом не способствует повышению прочности, термической стойкости и шлакостойкости. (Прототип, АС №1828854).

Цель изобретения - повышение термической стойкости, прочности и шлакостойкости поверхности контакта с жидким металлом.

Поставленная цель достигается тем, что огнеупорная композиция для изготовления футеровки сталеразливочных ковшей, включающая кремнеземсодержащий наполнитель, огнеупорную глину, хромомагнезит-силикат-натриевое связующее, дополнительно содержит нанокристаллический диоксид кремния, смесь сажи и фуллеренов при следующем соотношении компонентов, мас.%

Кремнеземсодержащий наполнитель 54-76
Огнеупорная глина 9-15
Хромомагнезит 8-13
Силикат-глыба 2-10
Нанокристаллический диоксид кремния 1-6
Смесь сажи и фуллеренов 2-7

Полученную смесь затворяют водой и наносят на внутреннюю поверхность сталеразливочного ковша. Затем готовят смесь для покрытия, включающую в мас.%: нанокристаллический диоксид кремния 10-15, смесь сажи и фуллеренов 15-25, миксерный графит - остальное, наносят ее на рабочую поверхность набивной массы толщиной 1-1,5 мм любым приемлемым способом и сушат при температуре 200°С.

Существенным отличием предлагаемой огнеупорной композиции является то, что дополнительно в состав композиции вводят нанокристаллический диоксид кремния, смесь сажи и фуллеренов, а отдельно приготовленную смесь для покрытия из нанокристаллического диоксида кремния, смеси сажи и фуллеренов и миксерного графита наносят на рабочую поверхность перед сушкой для получения высокотемпературного, термически стойкого и прочного рабочего слоя, который получается за счет образования высокотемпературных карбидов и силикатов хрома, алюминия и железа с нанокристаллическими частицами диоксида кремния и смеси сажи и фуллеренов в процессе эксплуатации футеровки.

Увеличению термической стойкости способствует образование шлакоустойчивого слоя на рабочей поверхности футеровки, постепенное снижение плотности и связанную с этим прочность футеровки от горячего (рабочего слоя) до холодной поверхности. Следует отметить, что в основном слое формирование структуры в огнеупорной композиции на основе кремнеземсодержащего наполнителя и предлагаемого связующего достигается в процессе термообработки до 200°С, то есть сложившаяся структура при 200°С практически не изменяется в внутренних (холодных) слоях футеровки в процессе эксплуатации при температурах 1450-1500°С.

Повышение прочности на рабочей поверхности достигается за счет образования высокопрочных силикатов и карбидов железа, хрома, магнезита и алюминия из нанокристаллических частиц диоксида кремния и смеси сажи и фуллеренов с основными составляющими миксерного графита и огнеупорной композиции. В результате этого образуется металлонесмачиваемая высокотемпературная рабочая поверхность.

Хромомагнезит-силикат-натриевое композиционное вяжущее, включающее нанокристаллические частицы диоксида кремния и смесь сажи и фуллеренов, получают путем совместного сухого помола до удельной поверхности 2500-3000 см2/г в мас.%: хромомагнезита 80%, силикат-глыбы 20%, затем смешиванием нанокристаллического диоксида кремния и смеси сажи и фуллеренов с ним.

Хромомагнезит ГОСТ 10380-74, химический состав, %: MgO - 55, СаО - 1,5, Fe2O3 - 13, GО3 - 20-30, Аl2О3 - 6.

Силикат-глыба (безводный силикат-натрия с силикатным модулем 2,7-3) соответствует ГОСТу 13079-81.

Смесь сажи и фуллеренов получают из природного шунгита (Патент №2232712. «Способ получения фуллеренового концентрата»).

Нанокристаллический диоксид кремния получают из паровой фазы или из рисовой шелухи (Патент №2191159 «Способ получения ультрадисперсного аморфного или нанокристаллического диоксида кремния». Патент №2067077 «Способ получения ультрадисперсного диоксида кремния и устройство для его осуществления»).

Без содержания в композиционном вяжущем нанокристаллического диоксида кремния и смеси сажи и фуллеренов не обеспечивается прочность основного слоя, а также прочность контакта рабочего слоя с основным. Причем совместно с огнеупорной глиной и хромомагнезит-силикат-натриевым вяжущим вышеуказанные новые компоненты в предлагаемом композиционном вяжущем способствуют увеличению термической стойкости и монтажной прочности основного слоя. Эти же компоненты совместно с миксерным графитом в рабочем слое (имеется контакт с железом) образуют металлонесмачиваемую высокотемпературную рабочую поверхность.

Введение кремнеземсодержащего компонента в количествах меньше предлагаемых не способствует образованию высокотемпературных силикатов, а введение ее в больших количествах приводит к увеличению объема основного слоя за счет образования низкотермостойкого кристобалита из свободной части кварцевого песка в условиях эксплуатации, особенно при температурах 1200-1300°С, и тем самым к уменьшению термической стойкости и прочности футеровки.

Введение силикат-глыбы в количествах меньше предлагаемых не обеспечивает достаточную прочность изделий после сушки при 200°С, а введение ее в количествах больше предлагаемых способствует увеличению плавнеобразующей компоненты, и тем самым снижается термическая стойкость и температура службы изделий и увеличивается металлосмачиваемость на границе с рабочим слоем.

Огнеупорная глина ТУ 14-8-90-74, использование ее в сочетании особенно с наноразмерными частицами диоксида кремния и смеси сажи и фуллеренов способствует образованию высокотемпературных и высокопрочных соединений силикатов, алюминатов, магнезитов и карбидов.

Миксерный графит является отходом металлургического производства, образующимся при охлаждении железоуглеродистых расплавов, в состав которых входят чешуйчатый графит (30-65%), окислы железа Fe2O4 и Fe2O3 (1-15%), карбиды железа: Fe2С - цементит и Fe3С - эксилон карбид (20-35%).

При нанесении на поверхность изделий смеси покрытия толщиной более 2 мм в нем образуются трещины, и тем самым снижается металлостойкость, нанесение же менее 1 мм приводит к неравномерному образованию высокотемпературной прослойки, что приводит также к снижению термической стойкости рабочей поверхности.

Кроме того, каждый из вышеуказанных компонентов в отдельности не обеспечивает достижения указанных отличий заявляемого состава, а в совокупности они дают положительный результат.

Пример 1

В смесь, содержащую, мас.%: кремнеземсодержащего наполнителя 76% (кварцевого песка Миллеревского месторождения), огнеупорной глины 9%, вводим композиционное вяжущее, получаемое путем совместного сухого помола, мас.% от обшей массы, хромомагнезита 8%, силикат-глыбы 4%, полученную смесь смешиваем в сухом виде в течение 2-3 мин, затем в нее вводим водный раствор нанокристаллического диоксида кремния в мас.% от общей массы 1% и смесь сажи и фуллеренов 2% (водотвердое отношение доводим до 0,11-0,12) и смешиваем в течение 2-3 мин. Затем футеруем сталеразливочный ковш. Далее перед сушкой на рабочую поверхность футеровки ковша наносим заранее отдельно подобранную оптимальную смесь для покрытия, включающую в мас.% от обшей массы наносимой смеси нанокристаллического диоксида кремния 10-15, смесь сажи и фуллеренов 15-25 и остальное миксерный графит. Эту смесь наносим на рабочую поверхность футеровки толщиной 1,5 мм любым приемлемым способом и далее ковш подвергаем сушке при 200°С в течение 4 ч.

Пример 2

В смесь, содержащую, мас.%: кремнеземсодержащего наполнителя 65% (кварцевого песка Миллеревского месторождения), огнеупорной глины 11%, вводим композиционное вяжущее, получаемое путем совместного сухого помола в мас.% от обшей массы хромомагнезита 14%, силикат-глыбы 2%, полученную смесь смешиваем в сухом виде в течение 2-3 мин, затем в нее вводим водный раствор нанокристаллического диоксида кремния в мас.% от общей массы 5% и смесь сажи и фуллеренов 3% (водотвердое отношение доводим до 0,11-0,12) и смешиваем в течение 2-3 мин. Затем этой смесью футеруем сталеразливочный ковш. Далее перед сушкой на рабочую поверхность футеровки ковша наносим заранее отдельно подобранную оптимальную смесь для покрытия, включающую в мас.% от обшей массы наносимой смеси нанокристаллического диоксида кремния 10-15, смесь сажи и фуллеренов 15-25 и остальное миксерный графит. Эту смесь наносим на рабочую поверхность футеровки толщиной 1,5 мм любым приемлемым способом и далее ковш подвергаем сушке при 200°С в течение 4 ч.

Пример 3

В смесь, содержащую, мас.%: кремнеземсодержащего наполнителя 56% (кварцевого песка Миллеревского месторождения), огнеупорной глины 15%, вводим композиционное вяжущее, получаемое путем совместного сухого помола, мас.% от обшей массы, хромомагнезита 13%, силикат-глыбы 8%, полученную смесь смешиваем в сухом виде в течение 2-3 мин, затем в нее вводим водный раствор нанокристаллического диоксида кремния в мас.% от общей массы 2% и смесь сажи и фуллеренов 6% (водотвердое отношение доводим до 0,11-0,12) и смешиваем в течение 2-3 мин. Затем футеруем сталеразливочный ковш. Далее перед сушкой на рабочую поверхность футеровки ковша наносим заранее отдельно подобранную оптимальную смесь для покрытия, включающую в мас.% от обшей массы смеси нанокристаллического диоксида кремния 10-15, смесь сажи и фуллеренов 15-25 и остальное миксерный графит. Эту смесь наносим на рабочую поверхность футеровки толщиной 1,5 мм любым приемлемым способом и далее ковш подвергаем сушке при 200°С в течение 4 часов.

Пример 4

В смесь, содержащую, мас.%: кремнеземсодержащего наполнителя 54% (кварцевого песка Миллеревского месторождения), огнеупорной глины 14%, вводим композиционное вяжущее, получаемое путем совместного сухого помола в мас.% от обшей массы, хромомагнезита 13%, силикат-глыбы 10%, полученную смесь смешиваем в сухом виде в течение 2-3 мин, затем в нее вводим водный раствор нанокристаллического диоксида кремния в мас.% от общей массы 4% и смесь сажи и фуллеренов 5% (водотвердое отношение доводим до 0,11-0,12) и смешиваем в течение 2-3 мин. Затем футеруем сталеразливочный ковш. Далее перед сушкой на рабочую поверхность футеровки ковша наносим заранее отдельно подобранную оптимальную смесь для покрытия, включающую в мас.% от обшей массы смеси нанокристаллического диоксида кремния 10-15, смесь сажи и фуллеренов 15-25 и остальное миксерный графит. Эту смесь наносим на рабочую поверхность футеровки толщиной 1,5 мм любым приемлемым способом и далее ковш подвергаем сушке при 200°С в течение 4 часов.

Пример 5

В смесь, содержащую, мас.%: кремнеземсодержащего наполнителя 54% (кварцевого песка Миллеревского месторождения), огнеупорной глины 11%, вводим композиционное вяжущее, получаемое путем совместного сухого помола в мас.% от обшей массы, хромомагнезита 12%, силикат-глыбы 10%, полученную смесь смешиваем в сухом виде в течение 2-3 мин, затем в нее вводим водный раствор нанокристаллического диоксида кремния в мас.% от общей массы 6% и смесь сажи и фуллеренов 7% (водотвердое отношение доводим до 0,11-0,12) и смешиваем в течение 2-3 мин. Затем футеруем сталеразливочный ковш. Далее перед сушкой на рабочую поверхность футеровки ковша наносим заранее отдельно подобранную оптимальную смесь для покрытия, включающую в мас.% от обшей массы смеси нанокристаллического диоксида кремния 10-15, смесь сажи и фуллеренов 15-25 и остальное миксерный графит. Эту смесь наносим на рабочую поверхность футеровки толщиной 1,5 мм любым приемлемым способом и далее ковш подвергаем сушке при 200°С в течение 4 часов.

Пример 6

В смесь, содержащую, мас.%: кремнеземсодержащего наполнителя 73% (кварцевого песка Миллеревского месторождения), огнеупорной глины 9% вводим композиционное вяжущее, получаемое путем совместного сухого помола в мас.% от обшей массы, хромомагнезита 9%, силикат-глыбы 2%, полученную смесь смешиваем в сухом виде в течение 2-3 мин, затем в нее вводим водный раствор нанокристаллического диоксида кремния в мас.% от общей массы 3% и смесь сажи и фуллеренов 4% (водотвердое отношение доводим до 0,11-0,12) и смешиваем в течение 2-3 мин. Затем футеруем сталеразливочный ковш. Далее перед сушкой на рабочую поверхность футеровки ковша наносим заранее отдельно подобранную оптимальную смесь для покрытия, включающую в мас.% от обшей массы смеси нанокристаллического диоксида кремния 10-15, смесь сажи и фуллеренов 15-25 и остальное миксерный графит. Эту смесь наносим на рабочую поверхность футеровки толщиной 1,5 мм любым приемлемым способом и далее ковш подвергаем сушке при 200°С в течение 4 часов.

После футеровки сталеразливочного ковша оптимальным составом №6 на рабочую поверхность наносим различные толщины заранее полученного оптимального состава покрытия.

Зависимость свойств состава №6 от толщины нанесенного слоя оптимального состава покрытия приведены в таблице 3.

Изделия, изготовленные из предлагаемой композиции, обладают высокими показателями теплофизических свойств, позволяющих увеличить срок службы сталеразливочного ковша по сравнению с прототипом в 7-8 раз. Результаты испытаний приведены в табл.1 и 2.

Литература

1. Способ получения огнестойкого покрытия. Епифановский И.С., Дмитриенко Ю.И., Полежаев Ю.В., Медведев Ю.В., Михатулий Д.С. Аналог. RU, Патент №2039070, С09D 183/04, С09D 5/18, В05D 1/38. 1995 г. 2000 г.

2. Способ изготовления футеровки тепловых агрегатов. Тотурбиев Б.Д., Батырмурзаев Ш.Д., Даитбеков А.М. Прототип RU, Патент №1828854 А1, С04В 35/14, 28/26. 1993 г. Бюл. №24.

Таблица 1
Наименование компонентов Состав мас.% Прототип
Предельные Запредельные
1 2 3 4 5 6 7 8 9
Кремнеземсодержащий компонент 76 68 56 54 54 73 42 83 66
Огнеупорная глина 9 11 15 14 11 9 16 8 15
Хромомагнезит 8 11 13 13 12 9 15 6 9
Силикат-глыба 4 2 8 10 10 2 12 1 10
Нанокристалпический диоксид кремния 1 5 2 4 6 3 7 0,5 -
Смесь сажи и фуллеренов 2 3 6 5 7 4 8 1,5 -

Таблица 2
Свойство огнеупорной композиции Показатели Прототип
Предельные Запредельные
1 2 3 4 5 6 7 8 9
Прочность при сжатии, МПа, после сушки при 200°С 42 30 37 44 47 52 25 15 45
Термостойкость, теплообмены (800°С - воздух) 40 36 44 39 41 49 20 18 44
Прочность при сжатии после нагрева до 1500°С на рабочей поверхности 46 48 50 42 52 57 27 20 46
Прочность при сжатии после нагрева до 1500°С на холодной поверхности 39 40 42 38 44 45 14 10 38

Таблица 3
Свойства Толщина слоя покрытия, мм Прототип
Предельные Запредельные
1 1,25 1,5 2 0,5
Металлостойкость, мм2 7,3 4,6 5,2 15,2 13,1 5,2
Термическая стойкость, число теплосмен (800°С - воздух) 37 50 45 37 30 44

Футеровка тепловых агрегатов, содержащая кремнеземсодержащий наполнитель, огнеупорную глину, хромомагнезит, силикат-глыбу и композицию для покрытия на основе миксерного графита, отличающаяся тем, что футеровка дополнительно содержит нанокристаллический диоксид кремния и смесь из сажи и фуллеренов при следующем соотношении компонентов, мас.%: кремнеземсодержащий компонент - 54-76, огнеупорная глина - 9-15, хромомагнезит 8-13, силикат-глыба 2-10, нанокристаллический диоксид кремния 1-6, смесь сажи и фуллеренов 2-7, покрытие на основе миксерного графита дополнительно содержит нанокристаллический диоксид кремния и смесь из сажи и фуллеренов при следующем соотношении компонентов, мас.%: нанокристаллический диоксид кремния 10-15, смесь сажи и фуллеренов 15-25 и миксерный графит - остальное.



 

Похожие патенты:
Изобретение относится к огнеупорной промышленности, а именно к получению масс, предназначенных для закрытия чугунных леток доменных печей. .
Изобретение относится к огнеупорной промышленности, а именно к получению масс, предназначенных для закрытия леток доменных печей. .
Изобретение относится к огнеупорной промышленности, а именно к получению пластичных огнеупорных масс для временного закрытия фурменных отверстий доменных печей при замене дутьевых фурм.
Изобретение относится к составам для горячего ремонта огнеупорной кладки промышленных печей методом керамической наплавки и может быть использовано в металлургической промышленности в коксохимическом производстве.
Изобретение относится к области производства огнеупоров и масс для футеровки элементов тепловых агрегатов металлургии, теплоэнергетики, химии и других отраслей промышленности.
Изобретение относится к составам огнеупорных масс, используемых для футеровки тепловых агрегатов. .
Изобретение относится к огнеупорной промышленности, в частности к производству огнеупорных бетонных смесей для футеровки различных тепловых агрегатов, например крышек тепловых агрегатов, арматурных слоев промежуточных ковшей и желобов доменного производства, футеровки водоохлаждаемых глиссажных труб методических печей.

Изобретение относится к промышленности строительных материалов и может быть использовано для футеровки тепловых агрегатов металлургической промышленности. .

Изобретение относится к составу огнеупорной бетонной массы для изготовления конструктивных элементов футеровок и может найти применение в черной металлургии для изготовления газодинамических отсекателей электропечей, горелочных блоков и блоков пирометра, блоков для футеровки рабочего пространства нагревательных колодцев, крышек промковшей и других футеровок.
Изобретение относится к составам сырьевых смесей, предназначенных для теплоизоляции обжиговых печей и других тепловых агрегатов. .
Изобретение относится к производству строительных материалов и может быть использовано для изготовления керамических стеновых изделий. .

Изобретение относится к огнеупорной промышленности, в частности к производству легковесных огнеупорных изделий для футеровки тепловых агрегатов. .

Изобретение относится к производству строительных материалов и изделий, в частности к стеновым керамическим изделиям, и может быть использовано при производстве керамического кирпича и камней.
Изобретение относится к огнеупорной промышленности, а именно к получению пластичных огнеупорных масс для временного закрытия фурменных отверстий доменных печей при замене дутьевых фурм.
Изобретение относится к составам для горячего ремонта огнеупорной кладки промышленных печей методом керамической наплавки и может быть использовано в металлургической промышленности в коксохимическом производстве.
Изобретение относится к области авиационной и ракетной техники, преимущественно к изготовлению антенных обтекателей ракет. .
Изобретение относится к области ракетной техники, преимущественно к изготовлению антенных обтекателей. .
Изобретение относится к составам огнеупорных масс, которые могут быть использованы для футеровки плавильных печей, изготовления форм для литья, преимущественно, цветных металлов.
Изобретение относится к огнеупорной промышленности, а именно к производству крупногабаритных кварцевых тиглей, которые могут быть использованы в производстве полупроводниковых материалов.

Изобретение относится к области создания люминесцентных наноструктурных композиционных керамических материалов на основе диоксида кремния и ортосиликата цинка (виллемита) и может быть использовано при разработке светоизлучающих и светосигнальных устройств, например плазменных дисплейных панелей, световых матричных индикаторов, светофоров и т.п., излучающих определенный цветовой тон видимого спектра
Наверх