Клеточная линия меланомы человека mel si, используемая для получения противоопухолевых вакцин

Изобретение относится к области медицинской биотехнологии, в частности к получению клеточных линий, используемых для создания противоопухолевых вакцин. Получена клеточная линия меланомы человека mel Si, которая хранится в Специализированной коллекции культур клеток позвоночных Российской коллекции клеточных культур под номером РККК(П)708Д. Изобретение может быть использовано для создания противоопухолевых вакцин.

 

Изобретение относится к области медицинской биотехнологии, в частности к получению клеточных линий, используемых для создания противоопухолевых вакцин.

Вакцинотерапия является одним из иммунологических подходов в лечении онкологических заболеваний. Принцип данного метода основан на индукции противоопухолевого иммунитета после введения в организм опухолевого антигена.

Центральным событием в процессе Т-клеточной иммунной реакции против опухолевых клеток является стимуляция распознавания Т-рецепторами антигенных детерминант, избирательно экспрессированных на опухолевых клетках. Опухолевые антигены, как правило, подвергаются процессингу перед их презентацией в контексте молекул гистосовместимости на клеточной поверхности. Различные категории опухолеассоциированных антигенов можно разделить на три главные группы: раково/тестикулярные антигены (MAGE, ВAGE, PRAME, NY-ESO-1, HOM-MEL-40), дифференцировочные антигены меланоцитов (тирозиназа, Melan-A/MART-1, gp100, TRP-1, TRP-2) и мутированные антигены (MUM-1, CDK4, β-катенин gp100-in4, р15, N-ацетилглюкозоаминтрансфераза V). С иммунологической точки зрения раково/тестикулярные антигены могут быть хорошими мишенями для иммунотерапии опухолей, поскольку в нормальных тканях эта группа антигенов (MAGE и PRAME) не экспрессируется, за исключением ткани яичек, которые недоступны для клеток иммунной системы из-за отсутствия их прямого контакта с иммунокомпетентными клетками [1] и отсутствия на них экспрессии HLA антигенов I класса [2]. В отличие от раково/тестикулярных антигенов иммуногенность дифференцировочных антигенов меланоцитов невысока из-за иммунологической толерантности к этим "своим" антигенам. Однако такой антиген, как Melan-A/MART-1, содержит несколько эпитопов для узнавания ЦТЛ (цитотоксические лимфоциты) и способен индуцировать генерацию меланома-специфичных ЦТЛ.

Таким образом, экспрессия различных опухолевых маркеров играет одну из ключевых ролей в индукции противоопухолевого иммунитета. Разнообразие соответствующих антигенов позволяет более «комплементарно» подбирать клеточные линии для создания противоопухолевых вакцин.

Вакцины, приготовленные на основе опухолевых клеток, являются цельноклеточными вакцинами и представляют собой живые аллогенные или аутологичные опухолевые клетки.

Аутологичные/сингенные цельные опухолевые клетки заключают в себе практически все антигены, экспрессированные опухолью хозяина, что снижает риск появления аллергических реакций на чужеродные неопухолеспецифичные антигены, а также снижается риск контаминации патогенными вирусами и внутриклеточными паразитами. Вакцина, состоящая из нескольких клеточных линий (поливалентные вакцины), содержит широкий спектр опухолевых антигенов и используется как аллогенная. Такая поливалентная вакцина, как вакцина Mortona и соавт. [3], состоит из трех аллогенных меланомных клеточных линий с высокой экспрессией поверхностных иммуногенных глико- и липопротеинов и ганглиозидов. Клинические испытания такой вакцины показали, что развитие иммунного ответа как клеточного, так и гуморального типа на эти антигены коррелировало с повышением выживаемости пациентов. Другая вакцина, «Melacine» [4] (Corixa corp., Canada), состоящая из лизата аллогенных меланомных клеточных линий, вызывает противоопухолевый эффект у 5-10% больных меланомой.

Задачей настоящего изобретения является получение новой опухолевой клеточной линии меланомы человека, несущей определенный набор антигенов, что позволит использовать ее в создании противоопухолевых вакцин.

Поставленная задача решается тем, что получена новая клеточная линия mel Si из опухолевого образца диссеминированной меланомы кожи человека.

Полученная клеточная линия обладает стабильными культуральными и морфологическими характеристиками. Хранится в коллекции клеточных культур института цитологии РАН под номером РККК(П)708Д.

Родословная клеточной линии mel Si

Линия клеток получена из опухолевого образца пациентки С.И.А., и/б 03/8114, находившейся на лечении в 2003 г. с диагнозом диссеминированная меланома кожи спины. Материал получен при удалении подкожного метастатического узла меланомы кожи спины.

Получение клеточной линии mel Si

Опухолевая ткань получена хирургическим путем при удалении метастазов меланомы кожи. Полученную суспензию клеток засевали во флаконы и культивировали в течение длительного времени. Стабильно растущая клеточная линия была получена на 15 пассаже.

Морфологические признаки mel Si

Клеточная линия mel Si высокодиференцированной эпителиоподобной меланомы характеризуется по форме округлыми клетками мелкого, среднего и крупного размеров с фестончатыми или четкими границами цитоплазмы. Цитоплазма клеток относительно обильная, негомогенная, окрашена в базофильные тона различной степени интенсивности с просветлением вокруг ядер. Ядра полиморфные округлой, овальной и неправильной формы расположены эксцентрично или центрально с грубоглыбчатым гиперхромным хроматином и чаще с одиночными ядрышками. Присутствуют немногочисленные гигантские одноядерные и многоядерные клетки. Выявляются в небольшом числе митозы.

Кариологическая характеристика mel Si

Культура равномерна по диаметрам ядер, плотности окраски и состоянию хроматина. Проанализировано 20 метафаз. Число хромосом колеблется от 46 до 49. Модальное число хромосом соответствует диплоидному набору (2n). Наблюдается трисомия по хромосоме 2, дупликация длинного плеча хромосомы 15. Во всех клетках наблюдаются маркерные хромосомы (1-3, чаще - 2 шт.). Остальные перестройки идентифицировать невозможно.

Кариотип - 46~49<2n>, XX, +2,dup(15) (q21q26.2), +2mar, inc.

Культуральные свойства mel Si

Клеточная линия mel Si культивируется в питательной среде RPMI (80%), эмбриональная телячья сыворотка 20%, содержащей антибиотики (пенициллин со стрептомицином в концентрации 100 ед./мл и 100 мкг/мл соответственно). В культуральные флаконы объемом 25 см2 в 5 мл среды засевают 1×106 клеток. Температура культивирования 37°С. Монослой клеток формируется через 3-4 дня. При посевной концентрации 70-100 тыс./мл монослой формируется на 2-3 сутки без смены среды. Клетки снимаются с использованием стандартных растворов 0,25% раствора трипсина и 0,02% раствора Версена в соотношении 1:1. При посевной концентрации 500 тыс./мл индекс пролиферации через 48 часов культивирования составляет 3.6-4.6.

Условия криоконсервации

Для длительного хранения клетки консервируют путем замораживания в жидком азоте. Клетки ресуспендируют в среде для замораживания - питательная среда RPMI (80%), эмбриональная телячья сыворотка 20%, 10% ДМСО. Режим замораживания: жидкий азот, снижение температуры на 1°С в минуту до минус 25°С, затем быстрое замораживание до минус 70°С. Хранение в жидком азоте при температуре минус 196°С. Размораживание быстрое, при 37°С. Клетки разводят в 10 мл бессывороточной среды и осаждают центрифугированием, ресуспендируют в 5 мл той же среды, содержащей 10% эмбриональной телячьей сыворотки, и переносят в культуральный флакон объемом 25 см2. Жизнеспособность клеток оценивают по включению трипанового синего. Жизнеспособность клеток после размораживания составляет 90%.

Контаминация

При длительном наблюдении бактерии и грибы в культуре не обнаружены. Тест на микоплазму отрицателен.

Примеры использования клеточной линии mel Si

Пример 1. Культивирование клеточной линии mel Si. Опухолевую ткань, полученную хирургическим путем при удалении метастазов меланомы кожи, разделяли механически на фрагменты величиной 2-3 мм3 в среде RPMI-1640, затем, используя «Cell dissociation sieve-tissue kit» (Sigma), получали суспензию клеток. Количество жизнеспособных клеток определяли по стандартной методике в камере Горяева, используя 0,5% раствор трипанового синего в PBS. В культуральные флаконы объемом 25 см2 в 5 мл среды засевали 1×106 клеток. Температура культивирования 37°С. Клетки культивировали в среде RPMI 1640, содержащей 20% телячьей эмбриональной сыворотки, 2 мМ L-глутамина, 1% HEPES, пенициллин (100 ед./мл), стрептомицин (100 мкг/мл) и комплекс аминокислот и витаминов (Flow Lab.) в культуральных флаконах (Costar). После 15 пассажа получена стабильно растущая клеточная линия.

Пример 2. Определение антигенов, экспрессированных на клеточной линии mel Si

Полученная клеточная линия mel Si, обладающая стабильными культуральными и морфологическими характеристиками, с помощью методов иммунофлюоресценции, иммуногистохимии, ПЦР (полимеразно-цепной реакции) анализа была исследована на экспрессируемые антигены (дифференцировочные, опухолеассоциированные и гистосовместимости).

Дифференцировочные меланомные маркеры, определяющие отношение данной линии к меланоме, исследованы с помощью моноклональных антител CD63, НМВ45, MelanA, Tyrosinaza, HMW. Раково-тестикулярный маркер-MAGE-3, который может быть экспрессирован на опухолях различного гистогенеза, исследован в реакции ПЦР. Антигены гистосовместимости определены с помощью моноклональных антител в реакции иммунофлюоресценции. Полученные данные отражены в таблице 1.

Таблица 1.
Экспрессия антигенов на клеточной линии mel Ch
Дифференцировочные Антигены Раково-тестикулярные Антигены Антигены гистосовместимости
CD63 положит. MAGE-3 положит. HLA (I класс) положит.
НМВ45 положит. HLA-DR (II класс) положит.
MelanA отр.
Tyros положит.
HMW положит.

Как следует из табл.1, данная клеточная линия характеризуется экспрессией меланомных (дифференцировочных) маркеров: CD63 и HMW, НМВ45, Tyrosinaza, подчеркивающих специфичность данной клеточной линии. Положительная экспрессия раково-тестикулярного маркера MAGE-3 соответствует онкологическому профилю и позволяет широко использовать данную линию для создания противоопухолевой вакцины. Уникальной особенностью данной линии является наличие антигенов гистосовместимости первого и второго класса, что обуславливает повышение иммуногенности за счет представления опухолевых антигенов непосредственно CD4 и CD8 клеткам.

Таким образом, данная клеточная линия меланомы кожи человека mel Si имеет свой индивидуальный фенотип опухолевых маркеров, заключающийся в наличии дифференцировочных антигенов (CD63, HMW, НМВ45, Tyrosinaza) и раково-тестикулярного - (MAGE-3), а также молекул гистосовместимости первого и второго класса, что позволяет применять полученную клеточную линию для создания противоопухолевых вакцин (цельноклеточных, генно-инженерных), используемых для лечения меланомы и других злокачественных новообразований

Технический результат, получаемый при использовании, изобретения выражается в расширении арсенала клеточных линий, используемых для создания противоопухолевых вакцин (цельноклеточных, генно-инженерных), что дает возможность повысить эффективность лечения и увеличить продолжительность жизни при лечении злокачественных новообразований.

Список литературы

1. Barker C.F. et al. Immunologically privileged sites. ADV. Immunol. 1977, 25: 1-54.

2. Tomita Y. et al. Immunohistochemical detection of intracellular adhesion molecule-1 (ICAM-1) and major histocompatibility complex class I antigens in seminoma. J. Urol. 149: 659-663, 1993.

3. Morton DL et al. Ann N Y Acad Sci 1993; 690:120.

4. Sondak V.K. Sosman J.A. Results of clinical trials with an allogenic melanoma tumor cell lysate vaccine: Melacine/Semin cancer Biol. 2003. Dec.13 (6): 409-15.

Клеточная линия меланомы человека mel Si, используемая для создания противоопухолевых вакцин, хранится в Специализированной коллекции культур клеток позвоночных Российской коллекции клеточных культур под номером РККК(П)708Д.



 

Похожие патенты:

Изобретение относится к комбинированной выработке тепла и электроэнергии. .

Изобретение относится к биотехнологии, конкретно к области генной инженерии, касается способа получения активного рекомбинантного белка летального фактора сибирской язвы LF, рекомбинантной плазмидной ДНК рЕТНIS-LF, кодирующей активный белок летального фактора сибирской язвы LF, и штамма бактерий Escherichia coli, продуцирующего активный белок летального фактора сибирской язвы.
Изобретение относится к микробиологии. .
Изобретение относится к получению экзополисахаридов, используемых в качестве сгущающих агентов при эксплуатации нефтяных месторождений, в частности относится к способу получения экзополисахаридов альгинатного типа.
Изобретение относится к биотехнологии и генной инженерии. .

Изобретение относится к новому штамму - продуценту антибиотика блеомицина и его использованию в биосинтезе противоопухолевого антибиотика блеомицина А2, эффективного при лечении плоскоклеточного рака и ряда других типов опухолей.
Изобретение относится к медицинской промышленности и касается нового штамма-продуцента противоопухолевого антибиотика карминомицина, применяемого в терапии сарком мягких тканей, лимфосаркомах, ретикулосаркомах, хорионэпителиомах, острых миелобластомах и лимфобластомах, хронических миелоидных лейкемиях, и способа получения антибиотика.

Изобретение относится к микробиологии и биотехнологии. .
Изобретение относится к биотехнологии. .

Изобретение относится к биотехнологии и представляет собой способ получения L-треонина с использованием бактерии, принадлежащей к роду Escherichia, которая модифицирована таким образом, что ген tolC в указанной бактерии инактивирован

Изобретение относится к биотехнологии, в частности к экологии, и может быть использовано в природоохранной деятельности для контроля качества вод пресных непроточных водоемов
Изобретение относится к биотехнологии, в частности к препарату для стимуляции роста и развития растений на основе штамма бактерий Halobacterium salinarum ВКПМ В-9025
Изобретение относится к биотехнологии, в частности к разработке новых источников получения биологически активных веществ и иммуномодулирующих средств для воздействия на живой организм
Изобретение относится к ветеринарной микробиологии и касается способа культивирования микобактерий туберкулеза

Изобретение относится к биотехнологии и микробиологии и представляет собой способ молекулярного типирования Chlamydia trachomatis путем секвенирования вариабельных участков трех генов Chlamydia trachomatis, таких как ompA, tsf, pmpF, полученных из бактериальной ДНК Chlamydia trachomatis, выделенной из клинического материала пациентов с урогенитальным хламидиозом, подвергнутых амплификации с последующим восстановлением последовательностей анализируемых генов, выравниванием и сравнительным анализом нуклеотидных последовательностей
Изобретение относится к микробиологии, аллергологии и биотехнологии и предназначено для получения безальбумозного нативного аллергена для аллергической диагностики стафилококкоза у животных
Наверх