Конденсационная установка

Изобретение относится к установкам для воздушной конденсации пара. Конденсационная установка с размещенными на несущей конструкции, расположенными, в частности, крышеобразно, теплообменными элементами, к которым посредством вентиляторов подводится охлаждающий воздух, содержащая ветровую стенку. Нижняя кромка ветровой стенки смещена наружу дальше, чем верхняя кромка ветровой стенки, причем ветровая стенка по высоте проходит примерно до верхней кромки распределительной линии пара. Изобретение позволяет снизить негативное воздействие набегающих сбоку воздушных потоков на расположенную на несущей конструкции конденсационную установку. 3 ил.

 

Изобретение относится к конденсационной установке.

Конденсационные установки в течение долгого времени применяются в области энергетики в широком масштабе для охлаждения турбин или промышленных испарителей. Коэффициент полезного действия энергетической установки в значительной мере зависит от производительности конденсационной установки. Местные климатические условия и связанные с ними скорости и направления ветра оказывают существенное влияние на производительности конденсации. Часто применяющиеся конструкции конденсационных установок содержат ветровые стенки, которые окружают совокупность теплообменных элементов для предотвращения непосредственной рециркуляции нагретого охлаждающего воздуха. Ветровые стенки располагаются, как правило, вертикально или частично даже под углом, с наклоном наружу, в зависимости от того, как это предписано в конструкторской документации.

Было установлено, что набегающие сбоку воздушные потоки, которые подвергаются сжатию под вентиляторами, при высоких скоростях воздушного потока приводят к местному падению давления под вентиляторами. За счет указанного разрежения вентиляторы не могут транспортировать необходимое количество охлаждающего воздуха, вследствие чего снижается производительность конденсации. Как следствие поступающий пар не может быстро и в достаточной степени конденсироваться. В результате подключенная к паровому контуру турбина при определенных условиях должна работать с меньшей производительностью.

Эта проблема, известная долгое время, решается, например, посредством того, что в объеме всасывания под вентиляторами монтируются заграждения, так называемые ветровые крестовые связи. Ветровые крестовые связи (ветровые крестовины) делят объем всасывания под вентиляторами на отдельные области. При этом следует учитывать, что вентиляторы частично смонтированы на высоте до 50 м. Ветровые крестовины оборудованы обычно до высоты примерно 30% этого свободного пространства, так что набегающий сбоку воздушный поток не может беспрепятственно проходить под вентиляторами, а напротив, при попадании на ветровые крестовины отклоняется наверх и подводится к вентиляторам. Хотя ветровые крестовины ведут к повышению КПД или к снижению потерь давления краевых вентиляторов, обтекание краевых вентиляторов часто не является удовлетворительным.

В основе изобретения лежит задача снижения негативного воздействия набегающих сбоку воздушных потоков на расположенную на несущей конструкции конденсационную установку.

Задача решается по существу за счет того, что ветровая стенка расположена наклонно в направлении ветрового потока, и соответственно, ее нижняя кромка сильнее выступает наружу, чем ее верхняя кромка. Модельные расчеты подтверждают уменьшение вызываемых ветром дополнительных потерь давления на уровне по меньшей мере 10%, независимо от того, расположена или нет дополнительная ветровая крестовина под вентиляторами. Преимущества, в частности, проявляются у вентиляторов, расположенных по краям конденсационной установки, при этом потери давления снижаются примерно на 20%.

Ветровая стенка сможет полностью или только на части своей высоты выполняться наклонной. Целесообразный угол наклона по отношению к вертикали составляет от 5 до 35°, в частности от 15 до 30°. Угол наклона не должен быть однако слишком большим, чтобы не приводить к существенному сужению поперечного сечения, так как это мешает беспрепятственному протеканию нагретого охлаждающего воздуха вверх, и ведет к снижению КПД. Например, ветровая стенка высотой около 10 м на своей верхней кромке может быть смещена на 1-3 м в направлении теплообменных элементов. За счет этого поперечное сечение снижется незначительно. Если в распоряжении имеется достаточное конструктивное пространство, то в принципе нижняя кромка ветровой стенки тоже может смещаться наружу. За счет этого дополнительно увеличивается наклон, но без снижения выходного поперечного сечения. При ветровой стенке высотой примерно 10 м, возможно максимальное смещение вбок, например, на 3 м+3 м=6 м.

Дополнительно или при необходимости ветровая стенка в направлении теплообменных элементов может быть выполнена вогнутой. При этом также значительная часть набегающего сбоку воздушного потока отклоняется вверх, так что падение давления под краевыми вентиляторами является незначительным. Так как объемный поток отклоненного вверх воздушного потока возрастает, создается дополнительный барьер из холодного воздуха, предпочтительно противодействующий рециркуляции нагретого воздуха. Также на стороне конденсационной установки, противоположной набегающему воздушному потоку, наклон ветровых стенок обеспечивает преимущества с точки зрения рециркуляции нагретого воздуха, поскольку нагретый воздух обтекает ветровую стенку по краям не вертикально, а в соответствии с наклоном ветровой стенки. За счет этого путь потока рециркулирующего нагретого воздуха удлиняется.

Дополнительно может быть предусмотрено, что ветровые стенки, по меньшей мере в области высоты, соседствующей с их нижней кромкой, имеют горизонтально проходящее профилирование. Обычно ветровые стенки изготавливаются из трапециевидных профилей, у которых профилирование проходит в направлении высоты, то есть снизу вверх. Такое ориентирование профилирования оказывает положительное воздействие на характеристики потока, а именно тем, что воздушный поток отводится вверх и вниз. Однако как раз отклонение вниз является нежелательным. Поэтому в области высоты, соседствующей с нижней кромкой, предусмотрено горизонтальное профилирование, выполняющее роль аэрогидродинамического барьера. Верхняя область высоты ветровой стенки, напротив, может иметь проходящее вертикально профилирование для снижения течения воздушного потока вниз.

Далее изобретение поясняется со ссылкой на чертежи, изображающие примеры реализации, на которых показано:

Фиг.1 - относящаяся к уровню техники расчетная модель для конденсационной установки с набегающим сбоку воздушным потоком и вертикально проходящей ветровой стенкой.

Фиг.2 - первый вариант выполнения конденсационной установки с наклонной ветровой стенкой.

Фиг.3 - другой вариант выполнения конденсационной установки с вогнутой ветровой стенкой.

На фиг.1 показаны результаты модельных расчетов конденсационной установки 1, которая относится к уровню техники. На конденсационную установку в модельном расчете сбоку набегает воздушный поток (ветер) W. Теплообменные элементы детально не показаны. Только относящиеся к теплообменным элементам распределительные линии 2 пара видны на поперечном сечении. Под распределительными линиями 2 пара расположены выпуклые теплообменные элементы. Изображенные лишь схематично вентиляторы 3 засасывают охлаждающий воздух снизу, при этом нагретый охлаждающий воздух через распределительные линии 2 пара проходит вверх. Четко видно, что не все вентиляторы равномерно обтекаются воздухом. В частности видно, что краевой вентилятор 4 транспортирует меньше воздуха, чем расположенные в центральной области вентиляторы 3. Это вызвано тем, что набегающий сбоку воздушный поток W ударяется о прямую ветровую стенку 5 и отклоняется частично вверх, то есть через конденсационную установку 1, но и частично вниз в объем всасывания под вентиляторами 3, 4. За счет заграждения 6 для потока и за счет ветровой крестовины 7 направление течения воздушного потока W может быть изменено, по меньшей мере частично так, чтобы воздушный поток поступал к вентиляторам. Это обеспечивается на краевых вентиляторах 4 только до некоторой степени. Под вентилятором 4 в области, обозначенной как ΔР, имеется меньшее давление, чем под другими вентиляторами 3. Это означает, что краевой вентилятор 4 может транспортировать меньше охлаждающего воздуха, за счет чего снижается КПД конденсационной установки 1.

Для решения этой проблемы предложено, что ветровые стенки распложены наклонно, как это, например, показано на фиг.2 и 3. На фиг.2 в очень упрощенном виде показана краевая область конденсационной установки 8, у которой на несущей конструкции 9 распложены крышеобразно множество рядов теплообменных элементов, причем для упрощения из них показаны только краевые теплообменные элементы 10 внешнего ряда. Под теплообменными элементами 10 распложен вентилятор 11, который засасывает охлаждающий воздух К снизу и в соответствии с отдельной стрелкой направляет к теплообменным элементам 10, где охлаждающий воздух К нагревается и выходит вверх в направлении стрелки WL. Одновременно из расположенной в области конька теплообменных элементов 10 распределительной линии 12 для пара в направлении стрелки D в теплообменные элементы 10 поступает пар, где осуществляется его конденсация.

Существенным в таком варианте реализации конденсационной установки является выполнение ветровой стенки 13, которая в примере по фиг.2 выполнена наклонной по отношению к вертикали V. Ветровая стенка 13 проходит по высоте примерно до верхней кромки распределительной линии 12 пара. Нижняя кромка 14 ветровой стенки 13 смещена наружу дальше, чем верхняя кромка 15 ветровой стенки 13. В данном примере реализации угол NW наклона составляет примерно 5°. За счет регулирования наклона ветровой стенки 13 поперечно набегающий воздушный поток W отводится вверх в большей степени, чем в случае вертикально расположенной ветровой стенки. За счет этого измеряемый перепад ΔРL давления между входной стороной 16 и выходной стороной 17 вентилятора 11 меньше, чем при вертикально ориентированной ветровой стенке.

Такой же эффект достигается, если ветровая стенка не является прямой, а согласно примеру выполнения по фиг.3 выполнена вогнутой. Ветровая стенка 18 на фиг.3, как и на фиг.2, сконфигурирована таким образом, что ее нижняя кромка 19 смещена наружу дальше, чем ее верхняя кромка 20, но с тем отличием, что ветровая стенка 18 от нижней кромки 19 к верхней кромке 20 проходит не прямо, а по кривой.

Список использованных обозначений

1 Конденсационная установка

2 Распределительная линия пара

3 Вентилятор

4 Вентилятор

5 Ветровая стенка

6 Заграждение для потока

7 Ветровая крестовина

8 Конденсационная установка

9 Несущая конструкция

10 Теплообменный элемент

11 Вентилятор

12 Распределительная линия пара

13 Ветровая стенка

14 Нижняя кромка ветровой стенки 13

15 Верхняя кромка ветровой стенки 13

16 Входная сторона вентилятора 11

17 Выходная сторона вентилятора 11

18 Ветровая стенка

19 Нижняя кромка ветровой стенки 18

20 Верхняя кромка ветровой стенки 18

D Пар

ΔP Перепад давления

ΔPL Перепад давления

K Охлаждающий воздух

NW Угол наклона

V Вертикаль

W Воздушный поток (ветер)

WL Нагретый воздух

Конденсационная установка с размещенными на несущей конструкции (9), расположенными, в частности, крышеобразно, теплообменными элементами (10), к которым посредством вентиляторов (11) подводится охлаждающий воздух (К), содержащая ветровую стенку (13, 18), отличающаяся тем, что нижняя кромка (14, 19) ветровой стенки (13, 18) смещена наружу дальше, чем верхняя кромка (15, 20) ветровой стенки (13, 18), причем ветровая стенка (13, 18) по высоте проходит примерно до верхней кромки распределительной линии (12) пара.



 

Похожие патенты:

Изобретение относится к атомной энергетике, а более конкретно к теплообменникам систем пассивного отвода тепла для ядерных энергетических установок. .

Изобретение относится к установкам для воздушной конденсации пара. .

Изобретение относится к области хлебопекарного производства. .

Изобретение относится к устройствам для конденсации водяного пара. .

Изобретение относится к установкам для конденсации пара, содержит выполненные самонесущими, расположенные в форме буквы А или остроконечной крыши на расстоянии от земли над вентилятором, опертые на несущую конструкцию пучки труб, которые с возможностью передачи среды присоединены своими верхними концами к парораспределительному трубопроводу со стороны конька, а своими нижними концами - к конденсатосборному трубопроводу, кроме того, пучки труб противоположны друг другу относительно проходящей через продольную ось парораспределительного трубопровода вертикальной средней продольной плоскости, а также они посредством своих верхних трубных досок оперты друг на друга с возможностью ограниченного шарнирного поворота, тогда как конденсатосборные трубопроводы присоединены под нижними трубными досками к ним и позиционированы на несущей конструкции с возможностью перемещения параллельно средней продольной плоскости относительно нее.

Изобретение относится к конденсатору с воздушным охлаждением. .

Изобретение относится к атомной энергетике, а более конкретно к теплообменникам систем пассивного отвода тепла (СПОТ). .

Изобретение относится к области химического машиностроения, в частности к аппаратам воздушного охлаждения, а именно к поверхностным конденсаторам, реализующим процесс конденсации многокомпонентных парогазовых смесей, содержащих неконденсируемый газовый компонент, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности, в том числе, при утилизации отходов их продукции пиролизом

Изобретение относится к атомной энергетике и может быть использовано при проектировании воздушных теплообменников, а также при конструировании трубных систем сепараторов-пароперегревателей и подогревателей турбоустановок атомных электростанций

Группа изобретений относится к конденсаторной установке с воздушным охлаждением и может использоваться для электростанций. Конденсатор содержит трубчатый кожух, у которого имеется открытая верхняя часть и открытая нижняя часть, кольцо из пучков трубчатых панелей, расположенных вертикально и под углом друг к другу. Каждый из пучков трубок содержит основную конденсационную область и вторичную конденсационную область, приспособлен для прохождения через него воздушного потока с целью конденсации жидкости в панелях и выполнен таким образом, чтобы воздушный поток проходил через панели и выходил через верхнюю часть кожуха. Внутри кожуха на уровне грунта расположен трубопровод для подачи пара. Конденсатор снабжен системой удаления неконденсирующихся газов с активными или пассивными устройствами для управления локальным расходом удаляемой смеси из неконденсирующихся газов и примешанного пара. Технический результат состоит в снижении уровня шума, себестоимости и/или энергопотребления. 4 н. и 16 з.п.ф-лы, 2 ил.

Изобретение относится к области энергетики. Дефлегматор включает две ступени, соединенные последовательно, причем первая ступень выполнена в форме парциального конденсатора с воздушным охлаждением и причем вторая ступень включает пучок в общем горизонтальных гладких или оребренных труб, который может эксплуатироваться по выбору или в режиме сухого воздушного охлаждения, или в режиме мокрого испарительного охлаждения, причем парциальный конденсатор с воздушным охлаждением имеет форму А-образного конденсатора с воздушным охлаждением, у которого множество оребренных труб проходят с двух противоположных сторон для создания А-образной или перевернутой А-образной конструкции, и пучок труб горизонтальный и расположен по центру в верхней части конденсатора в случае А-образной конструкции и в нижней части конденсатора в случае перевернутой А-образной конструкции, и один или несколько вентиляторов предназначены для того, чтобы способствовать восходящему потоку воздуха по трубам теплообмена и в направлении пучка труб. Изобретение позволяет улучшить тепловые характеристики в периоды высоких окружающих температур. 12 з.п. ф-лы, 8 ил.

Изобретение относится к области энергетики. Система охлаждения содержит смежные охлаждающие дельты 21, которые охлаждаются охлаждающим воздухом и располагаются вдоль траектории, охлаждающие дельты 21 расположены группами 22, при этом охлаждающие дельты 21 группы 22 располагаются преимущественно в одном направлении и определяют преимущественно прямой участок траектории 24, при этом участки траектории 24 смежных групп 22 образуют зигзагообразную траекторию 20. Зигзагообразная траектория 20 образует замкнутую звездообразную конфигурацию, а пары смежных групп 22 образуют комплексные дельта-компоненты 23, открытые со стороны впуска охлаждающего воздуха. Система охлаждения является энергосберегающей и высокорентабельной. 12 з.п. ф-лы, 16 ил.

Изобретение относится к теплоэнергетике, а именно к аппаратам воздушного охлаждения теплоносителей и градирням сухого типа, и может быть использовано в нефтеперерабатывающей, нефтехимической, газодобывающей, газоперерабатывающей, энергетической и других отраслях промышленности. Изобретение заключается в том, что камера распределительная продукта аппаратов воздушного охлаждения с трубчатой внутренней полостью и прямоугольной наружной геометрией содержит корпус преимущественно в форме прямоугольного параллелепипеда, имеющий переднюю и заднюю грани, выполненные параллельно-плоскими, внутреннюю полость камеры, выполненную в виде параллельных цилиндрических каналов с осью, перпендикулярной осям отверстий для теплообменных труб и пробок, причем отверстия параллельных цилиндрических каналов выходят на торцевую сторону корпуса. Технический результат - снижение технологической трудоемкости, повышение надежности работы камеры распределительной аппаратов воздушного охлаждения. 1 ил.

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применятся в устройствах для охлаждения электроники. В конденсаторе пара, содержащем канал для протока пара, образованный поверхностью конденсации, поверхность конденсации имеет выпуклую криволинейную форму с внутренним продольным ребром, с обеих сторон которого формируются полости для конденсата, при этом R3>R2, где R3 - радиус кривизны поверхности конденсации в верхней части канала конденсатора; R2 - радиус кривизны поверхности конденсации в полости. Технический результат - повышение эффективности конденсатора за счет увеличения интенсивности конденсации и оптимизации течения двухфазного потока. 6 ил.

Настоящее изобретение относится к теплотехнике и может быть использовано в охладительной дельте для охлаждения жидкостей, газов и паров, причем указанная охладительная дельта содержит охладительные панели, расположенные под углом друг к другу, в которых расположены охладительные трубки, проходящие горизонтально или, по существу, горизонтально, при этом охладительная дельта дополнительно содержит первый коллектор для потока среды, соединенный с охладительными трубками в месте соединения охладительных панелей и обеспечивающий пространство для соединения охладительных трубок по потоку, и вторые коллекторы для потока среды, присоединенные к противоположным относительно первого коллектора для потока среды концам охладительных панелей и обеспечивающие пространство для соединения охладительных трубок по потоку. Технический результат – повышение эффективности охлаждения. 10 з.п. ф-лы, 10 ил.
Наверх