Способ получения бицикло-[3,3,0]-октена-(2)

Изобретение относится к способу получения бицикло-[3,3,0]-октена-2 путем изомеризации циклооктадиена-1,5 на каталитической системе на основе комплексов никеля, характеризующемуся тем, что в качестве каталитической системы используют бис[1,2:5,6-η-циклооктадиен-1,5] никель в сочетании с эфиратом трифторида бора при мольных соотношениях Ni:BF3·OEt2=1:2. Применение данного способа позволяет упростить получение бицикло-[3,3,0]-октена-2, а также повысить его выход. 1 табл.

 

Предлагаемое изобретение относится к способу каталитической изомеризации циклооктадиена-1,5 в бицикло-[3,3,0]-октен-2, который является ценным мономером для производства высокомолекулярных циклосодержащих полиолефинов, стартовым продуктом в ряде тонких органических синтезов, специфическим лигандом в металлокомплексных катализаторах, а также исходным сырьем в синтезе алициклических дикарбоновых кислот.

Известны способы получения бицикло-[3,3,0]-октена-2 в несколько последовательных стадий, включающих галогенирование циклооктадиена-1,5 с последующим дегалогенированием полученного бициклогалогеналкена [S.Munavalli, D.К.Rohrbaugh, F.J.Berg, L.R.McMahon, F.R.Longo and H.D.Durst. Reactions of trifluoromethylsulfenyl chloride with 1,5-cyclooctadiene. // Phosphorus, Sulfur and Silicon. 2002. Vol.177. P.1117-1125].

Возможен также многостадийный синтез с использованием магнийорганических соединений [Е.A.Hill, К.Hsieh, К.Condroski, Н. Sonnentag, D.Skalitzky and D.Gagas. Rearrangement and Cleavage of the Grignard Reagent from 5-(Chloromethyl) norbornene. // J.Org. Chem. 1989. V.54. P.5286-5292].

Одна из наиболее удачных в препаративном смысле некаталитических методик описана в работе [Duygu D.Gunbas, Fatih Alg, Tuncer Hokelek, William H.Watsond and Metin Balcia. Functionalization of saturated hydrocarbons. High temperature bromination of octahydropentalene. // Tetrahedron. V.61. 2005. P.11177-11183]. Авторами предложенио галагенирование циклооктадиена-1,5 йодом в четыреххлористом углероде, с последующим дегалогенированием полученных бициклических олефинов алюмогидридом лития. Следует отметить, что при использовании данного способа продуктами реакции являются уже на первой стадии как минимум пять бициклических продуктов. Причем качественное разделение полученной смеси требует применения колоночной хроматографии. В конечном итоге, включая стадию дегалогенирования, использование данного способа позволяет получить не более 12-15% бицикло-[3,3,0]-октена-2, из расчета на взятый в реакцию циклооктадиен-1,5.

Среди каталитических способов получения бицикло-[3,3,0]-октена-2 можно принципиально выделить два - это кислотный и металлокомплексный катализ. Так в работе [P.J.Kropp, G.W.Breton, S.L.Craig, S.D.Crawford, W.F.Durland, J.E.Jones and J.S.Raleigh. Surface-Mediated Reactions. 6. Effects of Silica Gel and Alumina on Acid-Catalyzed Reactions. // J.Org. Chem. 1995. V.60. P.4146-4152] описан способ каталитической циклизации циклооктадиена-1,5, катализатором служит фосфорная кислота в сочетании с силикагелем. Выход бицикло-[3,3,0]-октена-2 составляет 75%. Оптимальная температура проведения процесса 80°С.

Способы получения бицикло-[3,3,0]-октена-2 путем циклизации циклооктадиена-1,5 на металлокомплексных катализаторах описаны в литературе достаточно широко в работах [Yoshikio Miura, Jitsuo Kiji and Junjt Furukawa. An important role of protonic acids in the isomerization of 1,5-ciklootadiene to bicycle[3,3,0]oct-2-ene by nickel(0)-phosphorus ligand system. // Journal of Molecular Catalysis. V.1. 1975/76. P.447-450, EP 0134153A3, U.S.Pat. 3912786, GB 1340760]. В данных работах в качестве катализатора выступают соединения никеля в сочетании с алюминийорганическими соединениями, органическими кислотами и фосфорорганическими стабилизирующими лигандами. Например в работе [патент GB 1340760] предлагается использовать в качестве катализатора аллилхлорид, аллилбромид или ацетилацетонат никеля в сочетании с метил-сесквигалогенидами алюминия. Реакцию ведут в полярных растворителях (галогеналканы, галогенарены) при температурах 0-150°С. Конверсия циклооктадиена-1,5 достигает 99% с выходом бицикло-[3,3,0]-октена-2 до 96%.

Недостатками известных способов являются жесткие условия проведения процесса, а также низкая селективность. В процессах, лишенных этих недостатков, например патент GB 1340760, используется достаточно сложная композиция для формирования катализатора, что затрудняет выделение целевого продукта после проведения реакции.

Ближайшим известным решением аналогичной задачи по технической сущности является способ каталитической циклизации циклооктадиена-1,5 с использованием в качестве катализатора сложной системы, состоящей из бис-циклооктадиенил никеля, стабилизирующих фосфиновых лигандов и уксусной или трифторуксусной кислоты [Yoshikio Miura, Jitsuo Kiji and Junjt Furukawa. An important role of protonic acids in the isomerization of 1,5-ciklootadiene to bicycle[3,3,0]oct-2-ene by nickel(0)-phosphorus ligand system. // Journal of Molecular Catalysis. V.1. 1975/76. P.447-450].

Особенностью данной каталитической системы является необходимость использования стабилизирующих лигандов, в качестве которых наиболее эффективными, по данным авторов, являются трициклогексилфосфин и трифенилфосфин. В отсутствии соединений трехвалентного фосфора каталитическая система малостабильна и ее производительность ничтожно мала. Кроме того, наибольшая эффективность процесса изомериизации циклооктадиена-1,5 в бицикло-[3,3,0]-октен-2 достигается при повышенной температуре - 80°С.

Упростить получение и повысить выход бицикло-[3,3,0]-октена-2 предлагается следующим способом изомеризации циклооктадиена-1,5, где в качестве каталитической системы используют комплекс никеля(0)-бис[1,2:5,6-η-циклооктадиен-1,5]никель (далее -Ni(COD)2) в сочетании с эфиратом трифторида бора (далее (BF3·OEt2) при мольных соотношениях Ni:BF3·OEt2=1:2. В зависимости от конкретной задачи реакцию можно вести в растворителе (толуол или бензол) или непосредственно в циклооктадиене-1,5.

Способ заключается в формировании в атмосфере инертного газа (аргон, азот) непосредственно в среде циклооктадиена-1,5 катализатора взаимодействием 1 мольной части комплекса никеля (0) Ni(COD)2 с 2-мя мольными частями BF3·OEt2. Через 2-4 мин после формирования катализатора в системе начинается реакция изомеризации циклооктадиена-1,5 в бицикло-[3,3,0]-октен-2. Реакция изомеризации протекает практически количественно при температуре 20°С и атмосферном давлении.

Пример 1. В термостатируемый стеклянный сосуд, обеспечивающий возможность интенсивного перемешивания, при температуре 20°С в атмосфере аргона или азота последовательно вносят 10 г (92,5 ммоль) циклооктадиена-1,5, затем 0,25 г (0,9 ммоль) комплекса Ni(COD)2. После полного растворения комплекса при перемешивании добавляют 0,26 г (1,8 ммоль) BF3·OEt2. Реакцию ведут в течение 30 мин. В случае контроля ГЖХ процесс можно закончить быстрее, так как время полного превращения циклооктадиена-1,5 в бицикло-[3,3,0]-октен-2 при указанных условиях составляет от 18 до 23 мин. Конверсия циклооктадиена-1,5 составляет более 99%. Выход бицикло-[3,3,0]-октена-2 более 97%.

Пример 2. Реакцию проводят в условиях, аналогичных примеру 1. Отличием является то, что мольное отношение Ni:циклооктадиен-1,5=1:1000. Пример иллюстрирует незначительное влияние мольных отношений Ni:циклооктадиена-1,5 на конверсию циклооктадина-1,5 и выход целевого продукта бицикло-[3,3,0]-октена-2. Данные приведены в таблице.

Пример 3. Реакцию проводят в условиях, аналогичных примеру 1. Отличием является то, что в реакционной среде в качестве растворителя присутствует толуол. Объемное отношение толуола к циклооктадиену-1,5 равно 1:1. Пример иллюстрирует незначительное влияние присутствия в среде монозамещенного ароматического растворителя - толуола на конверсию циклооктадина-1,5 и выход целевого продукта бицикло-[3,3,0]-октена-2. Данные приведены в таблице 1.

Пример 4. Реакцию проводят в условиях, аналогичных примеру 1. Отличием является то, что в реакционной среде в качестве растворителя присутствует бензол. Объемное отношение бензола к циклооктадиену-1,5 равно 1:1. Пример иллюстрирует незначительное влияние присутствия в среде ароматического растворителя - бензола на конверсию циклооктадина-1,5 и выход целевого продукта бицикло-[3,3,0]-октена-2. Данные приведены в таблице.

Описываемый способ позволяет получать бицикло-[3,3,0]-октен-2 в мягких условиях с выходом более 97%.

Таблица
Мольное отношение Ni(COD)2:циклооктадиен-1,5 Растворитель Конверсия Циклооктадиена-1,5, % Выход бицикло-[3,3,0]-октена-2, %
1 1:100 нет 100** 97,2
2 1:1000 нет 98-98,5 96-97
3 1:100 толуол* 100** 98
4 1:100 бензол* 100** 98
*объемные отношения растворитель:циклооктадиен-1,5 = 1:1
**методом ГЖХ по окончании реакции не обнаруживается.

Способ получения бицикло-[3,3,0]-октена-2 путем изомеризации циклооктадиена-1,5 на каталитической системе на основе комплексов никеля, отличающийся тем, что в качестве каталитической системы используют бис[1,2:5,6-η-циклооктадиен-1,5] никель в сочетании с эфиратом трифторида бора при мольных соотношениях Ni:BF3·ОЕt2=1:2.



 

Похожие патенты:

Изобретение относится к способу изомеризации потока сырья, содержащего С5-С6 углеводороды, включающему: загрузку водорода и сырья, содержащего, по меньшей мере, нормальные C5-С6 углеводороды в зону изомеризации и контактирование водорода и сырья с катализатором изомеризации в условиях, способствующих увеличению степени разветвления углеводородов в сырьевом потоке и обеспечивающих образование вытекающего потока из зоны изомеризации, содержащего, по меньшей мере, бутан, нормальный пентан, нормальный гексан, метилбутан, диметилбутаны, метилпентаны и углеводороды, имеющие семь или более углеродных атомов, причем условия изомеризации включают температуру от 40° до 235°С и давление 70 кПа абс.

Изобретение относится к катализатору и способу для селективного повышения качества парафинового сырья с целью получения обогащенного изопарафинами продукта в качестве компонента бензина.

Изобретение относится к области органического синтеза, в частности к способу получения разветвленных алканов общей формулы С nН2n+2, где n=4-10. .
Изобретение относится к нефтепереработке, в частности к способам изомеризации нормальных парафиновых углеводородов С4 -С7, преимущественно углеводородов С5-С 6, с использованием цеолитсодержащих катализаторов.

Изобретение относится к способу изомеризации н-парафинов и может найти широкое применение в химической, нефтехимической и нефтеперерабатывающей отраслях промышленности.

Изобретение относится к области основного органического синтеза, а конкретно к усовершенствованному способу изомеризации пентан-гексановой фракции с целью получения высокооктановой добавки бензина.

Изобретение относится к способу получения экзо-тетрагидроциклопентадиена, который может быть использован в качестве углеводородного горючего, исходных мономеров для получения биологически активных веществ.

Изобретение относится к способам получения бициклических соединений, конкретно - к способу получения бицикло[3.2.1]-октена-2, имеющего формулу (I), и который может найти применение в качестве исходного сырья при получении полимеров с чередующимся циклопентановым кольцом, обладающих виброизоляционными свойствами, и пластификаторов аналогов диметилфталата

Изобретение относится к способу получения бензоциклобутена. Способ характеризуется тем, что в качестве исходного сырья используются композитные смеси четвертичных аммониевых солей 2-метилтбензил-(триалкил)аммоний хлоридов нижеуказанной формулы и ингибиторов полимеризации, таких как гидрохинон или метилгидрохинон, в водных растворах и тем, что композитные смеси подвергаются пиролитическому расщеплению и дают требуемый результат при значениях давления 2-30 мм рт.ст. и температуре 350-450°С в токе аргона в присутствии оксидов металлов (CuO и Fe2O3). Использование настоящего изобретения позволяет получать целевой продукт с высокой конверсией и минимальным выделением агрессивных побочных продуктов, способных повредить металлические детали вакуумного оборудования. 4 пр. где R=Me, Et, Py

Изобретение относится к способу получения смеси гексацикло[8.4.00 2,7.03,14.04,8.09,13]тетрадецена-5 и гексацикло[6.6.0.02,6.05,14.07,12 .09,13]тетрадецена-3 изомеризацией бинора-S под действием фосфорного ангидрида P2O5 (P4 O10), характеризующемуся тем, что реакцию проводят в среде хлористого метилена при 25-35°С с добавлением к P2O5 оксида алюминия Al2O 3 при следующем соотношении реагентов: [Al2O 3]:[P2O5]:[бинор-S]=0.2÷0.3:0.2÷0.3:1

Изобретение относится к способу гидрогенизации и дециклизации бензола и изомеризации парафинов C5-С 6 исходного парафинового сырья, содержащего нормальные парафины C5-С6 и, по меньшей мере, 1 мас.% бензола, включающему: (а) подачу исходного сырья без отвода или конденсирования водорода в осушитель для удаления воды и получения осушенного исходного сырья, содержащего менее 0,5 мас.% воды; (b) объединение осушенного исходного сырья с газовым потоком, богатым водородом, с образованием смешанной загрузки; (с) подачу смешанной загрузки с температурой в интервале от 38 до 232°С в зону гидрогенизации и контактирование указанной смешанной загрузки с катализатором гидрогенизации в условиях проведения гидрогенизации для насыщения бензола и образования потока продукта, отводимого из зоны гидрогенизации, имеющего температуру в интервале от 149 до 288°С и содержащего менее 1,5 мас.% бензола; при этом условия проведения гидрогенизации включают избыточное давление в пределах от 1400 до 4800 кПа, часовую объемную скорость подачи загрузки от 1 до 40 час-1 и отношение содержаний водорода и углеводородов в интервале от 0,1 до 2; (d) регулирование температуры потока продукта, отводимого из зоны гидрогенизации, в интервале от 104 до 204°С за счет, по меньшей мере, теплообмена продукта, отводимого из зоны гидрогенизации, со смешанной загрузкой; (е) подачу, по меньшей мере, части продукта, отводимого из зоны гидрогенизации в зону изомеризации, и контактирование потока указанной загрузки с катализатором изомеризации в условиях проведения изомеризации и дециклизации при избыточном давлении в интервале от 1380 до 4830 кПа; (f) извлечение продукта изомеризации, полученного в зоне изомеризации

Изобретение относится к способу получения смеси гексацикло[8.4.0.0 2,17.03,14.04,8.09,13]тетрадецена-5 и гексацикло[6.6.0.02,6.05,14.07,12 .09,13]тетрадецена-3 изомеризацией бинора-S при повышенной температуре на платиновом катализатореPt/SiO 2, характеризующемуся тем, что реакцию проводят на платиновом катализаторе, полученном методом пропитки шарикового широкопористого силикагеля диаметром 2,5-3,5 мм водным раствором платинохлористоводородной кислоты Н2РtCl6 до содержания платины 0,25-0,5%, бинор-S подают в реактор в виде 20-40%-ного раствора в бензоле или толуоле при объемной скорости 50-60 мл/ч при температуре 240-250°С

Изобретение относится к процессам изомеризации легких бензиновых фракций, содержащих углеводороды гептанового и октанового рядов, и может применяться на нефтеперерабатывающих и нефтехимических предприятиях

Изобретение относится к способу изомеризации ксилолов, включающему: (а) обеспечение потока нафты в зону гидроочистки, в которой поток нафты контактирует с катализатором гидроочистки в условиях гидроочистки для получения обработанного с помощью гидроочистки потока нафты; (b) направление обработанного с помощью гидроочистки потока нафты в зону риформинга, в которой указанная обработанная с помощью гидроочистки нафта контактирует с катализатором риформинга в условиях риформинга для получения потока продукта риформинга, включающего ароматические соединения, и в котором газы и С4-углеводороды и более легкие углеводороды, полученные в зоне риформинга, дают в результате поток продукта риформинга, в значительной степени свободного от газов и С 4-углеводородов и более легких углеводородов; и (с) введение потока продукта риформинга и выходящего потока зоны изомеризации, независимо или в виде объединенного потока, в зону фракционирования продуктов риформинга отгонной колонны для получения исходного материала, содержащего бензол, толуол и С5-С8 -алифатические углеводороды, и потока, обогащенного ксилолом и более тяжелыми углеводородами; (d) введение исходного материала, включающего бензол, толуол и С5-С8-алифатические углеводороды, в зону экстракционной перегонки, и отделение потока кубового продукта ароматических углеводородов, включающего бензол и толуол, бокового потока алифатических углеводородов, включающего C7-C8-алифатические углеводороды, и потока верхнего погона алифатических углеводородов, включающего С 5-С7-алифатические углеводороды; (е) обработку бокового потока алифатических углеводородов, включающего С 7-С8-алифатические углеводороды, для образования в значительной степени свободного от растворителя бокового потока алифатических углеводородов, включающего С7-С 8-алифатические углеводороды; (f) введение водорода в боковой поток в значительной степени свободных от растворителя алифатических углеводородов, включающих C7-C8 алифатические углеводороды, и в неравновесный поток ксилола, включающего контакт неравновесной смеси ксилолов в зоне изомеризации с катализатором изомеризации в условиях изомеризации и образование выходящего потока зоны изомеризации, включающего параксилол
Наверх