Лекарственное средство, обладающее противовирусным действием и содержащее 2-метилтио-5-метил-6-нитро-1,2,4-триазоло[1,5-a]пиримидин-7(3н)-он

Описывается новое применение 2-метилтио-5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7(3н)-она. Вещество обладает противовирусным действием в отношении вируса гриппа A (H5N1), вируса лихорадки Западного Нила и других вирусных инфекций. Противовирусная активность широкого спектра действия выявлена впервые. 8 табл.

 

Изобретение относится к области биологически активных соединений и касается лекарственного средства, содержащего 2-метилтио-5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7(3Н)-он, обладающего противовирусным действием, предназначенного для лечения и профилактики инфекционных вирусных заболеваний животных и человека, и может быть использовано в лечебных учреждениях, научно-исследовательских лабораториях, в животноводстве и птицеводстве.

Актуальность проблемы противовирусной терапии, в особенности в условиях быстрой мутации вирусов, выявления новых возбудителей опасных и медленных вирусных инфекций, вызывает постоянную потребность в новых средствах, которые бы обладали высокой активностью, продолжительным действием и низкой токсичностью. В литературе описано получение 5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7-она нитрованием 5-метил-1,2,4-триазоло[1,5-а]пиримидин-7-она (Y.Makisumi Synthesis of potential anti-cancer agents. VII. 6-Nitro- and 6-amino-s-triazolo[2,3-a]pyrimidines, Chemical & Pharmaceutical Bulletin, 1961, №9, p.873-877; Т.П.Кофман, Т.А.Уварова, Г.Ю.Карцева, Т.Л.Успенская 6-Нитро- и 6-бромпроизводные 4,7-дигидро-1,2,4-триазоло[1,5-а]пиримидин-7-она, Журнал органической химии, 1997, т.33, вып.12, с.1784-1793); упоминается также натриевая соль 5-метил-6-нитро-1,2,4-триазоло[1,5-а] пиримидин-7-она (М.Н.Кушнир, В.Л.Русинов, Е.Н.Уломский, Н.А.Клюев, С.В.Шоршнев, Г.Г.Александров, О.Н.Чупахин Нитроазины. XXII. Алкилирование и прототропная таутомерия в ряду 6-нитро-7-оксо-1,2,4-триазоло[1,5-а]пиримидинов, Журнал органической химии, 1993, т.29, вып.3, с.629-638); также имеются данные об анти-арбовирусной активности 5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7-она (Виноград И.А., Пластунов В.А., Козловский М.М., Бенцель Л.В., Билецка Г.В., Лозинский И.М., Рогочий Е.Г., Шоломей М.Д. Микробioлогичнiй Журнал. 2001, т.63, №2, с.14-19).

В качестве изобретения предлагается лекарственное средство, содержащее активную составляющую, обладающую противовирусным действием и представляющую собой 2-метилтио-5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7(3Н)-он формулы (1). Кроме соединения (1) лекарственное средство может содержать фармацевтически приемлемые компоненты: наполнители, разбавители и/или другие вспомогательные вещества.

Для оценки противовирусных свойств соединения (1) и лекарственного средства на его основе использованы известные противовирусные лекарственные препараты - ремантадин, арбидол и рибавирин.

Соединение (1) получено конденсацией 3-метилтил-5-амино-1,2,4-триазола (2) с ацетоуксусным эфиром с последующим нитрованием образующегося 2-метилтио-5-метил-1,2,4-триазоло[1,5-а]пиримидин-7-она (3).

Соединение (1) представляет собой бледно-желтое кристаллическое вещество, растворимое в воде, этаноле, диметилсульфоксиде, нерастворимое в этилацетате, хлороформе, гексане.

Данные элементного анализа, ЯМР 1Н и ИК-спектроскопии соединения (1) полностью соответствуют приписываемому строению (см. пример 1).

Лекарственное средство может быть использовано либо перорально, либо с помощью парентеральных инъекций в растворе. Оно может применяться самостоятельно, например в форме микрокапсул, либо с подходящими вспомогательными средствами и/или наполнителями.

Подходящие твердые или жидкие лекарственные формы включают, к примеру, гранулы, порошки, покрытые оболочкой таблетки, микрокапсулы, суппозитории, сиропы, эликсиры, суспензии, эмульсии, капли или инъекционные растворы, а также препараты с целевой доставкой активной субстанции, в производстве которых обычно используются вспомогательные вещества, такие как наполнители, дезинтеграторы, связующие, создающие оболочку агенты, разрыхлители, смазочные добавки, отдушки или подсластители. Подходящими вспомогательными веществами являются, например, диоксид титана, лактоза, маннитол и другие сахара, тальк, молочный альбумин, желатин, мука, целлюлоза и ее производные, животные и растительные масла, полиэтиленгликоли и растворители, такие как стерильная вода, и моноатомные и полиатомные спирты, например глицерин.

Пример 1. Синтез 2-метилтио-5-метил-6-нитро-1,2,4-триазоло[1,5-а]-пиримидин-7(3Н)-она (1)

1 стадия: 2-Метилтио-5-метил-1,2,4-триазоло[1,5-а]пиримидин-7(3Н)-он (2). Смесь 130 г (1 моль) 3-метилтио-5-амино1,2,4-триазола (3) и 140 мл (1,1 моль) ацетоуксусного эфира в 300 мл уксусной кислоты кипятят в течение 2 часов. После охлаждения реакционной массы выпавший осадок отфильтровывают и перекристаллизовывают из воды и сушат на воздухе при комнатной температуре. Выход (2) 125,5 г (64%).

2 стадия: 2-Метилтио-5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7(3Н)-он (1). К смеси 76 мл (1,25 моль) концентрированной азотной кислоты (d 1,4 г/мл) и 250 мл концентрированной серной кислоты (d 1,83 г/мл), охлажденной до 0°С, добавляют порциями 98 г (0,5 моль) 2-метилтио-5-метил-1,2,4-триазоло[1,5-а]пиримидин-7(3Н)-она (3) таким образом, чтобы температура реакционной массы не превышала 40°С. После добавления всего вещества реакционную массу перемешивают 3 часа при комнатной температуре и выливают в 500 мл ледяной воды. Полученный раствор нейтрализуют концентрированным водным аммиаком и отфильтровывают выпавший осадок аммониевой соли. Аммониевую соль суспендируют в 40 мл воды, охлаждают до 5°С и аккуратно приливают концентрированную соляную кислоту до рН 1. Выпавший осадок отфильтровывают и сушат на воздухе. Выход (1) 67,5 г (54%).

2-Метилтио-5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7(3Н)-он имеет следующие физико-химические характеристики:

ТПЛ>280°С; 1Н ЯМР-спектр в ДМСО-d6 δ, м.д.: 2,57 (3Н, т, С-СН3), 3,02 (3Н, с, SCH3), 10,2 (1Н, уш.с, NH). Найдено: С - 34.62, Н - 3,07, N - 29,22. Брутто-формула - С7Н7N5O3S. Вычислено: С - 34.85, Н - 2.92, N - 29.03%. ИК-спектр, ν, см-1: 1365, 1558 (вал, NO2), 1720 (вал, С=O), 3420 (вал, NH).

Пример 2. Оценка токсичности соединения (1)

1. Оценка цитотоксичности.

Цитотоксичность оценивали в отношении культуры клеток GМК-АН-1(Д) и СПЭВ. Плотность клеток составляла 250 тыс./мл. Суспензию клеток по 1 мл вносили в стеклянные пробирки, в течение 48 ч инкубировали при 37°С для формирования монослоя. Подготовленные на среде поддержания в концентрации от 500 до 2 мкг/мл соединение (1) вносили в пробирки с монослоем культуры клеток. На каждую дозу соединения (1) использовали по 4 пробирки с монослоем. Визуальный учет с помощью светового микроскопа проводили ежедневно. Начальные этапы цитопатического действия (ЦПД) характеризовались изменением морфологии клеток, далее наблюдали их округление и отслоение от стекла, разрушение монослоя. В зависимости от концентрации препарата ЦПД наступало на 1-7 сутки после внесения препаратов.

Деструктивные изменения 50% клеток СПЭВ наблюдали при внесении в питательную среду 500 мкг/мл соединения (1). В 25% случаях деструкцию монослоя клеток вызывало соединение в дозе 250 мкг/мл. В культуре клеток GMK-AH-(Д) 50% деструкцию монослоя вызывало внесение в питательную среду 500 мкг/мл соединения. При внесении соединения в концентрации 250 мкг/мл цитопатические изменения в культуре клеток СПЭВ и GMK-AH-1(Д) не были обнаружены.

Таким образом, в результате проведенных исследований установлено, что максимально-переносимая доза (МПД) соединения (1) для культуры клеток СПЭВ составляет 125 мкг/мл, GMK-AH-1(Д) - 25 мкг/мл.

2. Острая токсичность для лабораторных животных

Острую токсичность соединения (1) оценивали для неинфицированных 2-недельных белых мышей-сосунков при однократном пероральном введении соединения (1). Разведения соединения (1) в диапазоне от 30 мг/кг до 2000 мг/кг готовили на физ. растворе и вводили животным по 0.05 мл однократно. На каждое разведение использовали не менее 20 животных, за которыми осуществляли наблюдение в течение 14 дней. Рассчитывали ЛД50 по Керберу в модификации И.П.Ашмарина. Контролировали изменения в поведении животных, внешнего вида, веса, а также отсутствие или наличие гибели животных. Результаты оценки токсичности, приведенные в таблице 1, свидетельствуют о том, что соединение (1) в концентрации от 30 до 250 мг/кг нетоксично для белых мышей массой 4-5 г при однократном пероральном применении. При максимально используемой дозе 100% гибель животных при однократном применении соединения (1) также отсутствовала.

Таким образом, рассчитать ЛД50 для белых мышей не представляется возможным. В более высоких концентрациях в малом объеме растворителя соединение (1) плохо растворимо, густая консистенция их не позволяет использовать конюли для введения животным.

Таблица 1
Оценка токсичности препаратов при однократном пероральном введении белым мышам - сосункам
Препарат Концентрация препарата, мг/кг массы животного
2000 1000 500 250 125 62 31
количество животных павших/количество животных в опыте
Соединение (1) - 2/20 1/20 0/20 0/20 0/20 0/20

Пример 3. Изучение эффективности соединения (1) в культурах клеток

1. В отношении вируса Западного Нила

Изучение противовирусной эффективности соединения (1) в отношении вируса Западного Нила (ЗН) проводили в культуре клеток GMK-АН-1(Д). Для изучения противовирусной эффективности соединение (1) вносили в поддерживающую среду через 1 час после инфицирования. На каждую дозу препарата использовали не менее 4 пробирок с монослоем культуры клеток двухсуточного возраста. Инфицирующая доза вируса составила 0,01 БОЕ/кл. После адсорбции вируса в течение 60 минут при температуре от (37,0±0,5)°С монослой трижды промывали питательной средой ПС-4 на растворе Хенкса, содержащей 2% сыворотки КРС и по 100 ЕД/мл пенициллина и стрептомицина. Затем вносили свежую среду, содержащую исследуемые дозы соединения (1), и инкубировали в течение 2-х суток при температуре от (37,0±0,5)°С. По окончании инкубации клетки разрушали криодеструкцией: трехкратным быстрым замораживанием (в криостате при температуре минус 30°С) и быстрым оттаиванием (водяная баня при комнатной температуре). Уровень накопления возбудителя в исследуемых пробах определяли титрованием проб методом получения негативных колоний вируса в монослое культуры клеток GMK-AH-1(Д) под твердым агаровым покрытием.

Результаты оценки противовирусной эффективности представлены в таблице 2. При применении в максимально переносимой концентрации соединения (1) подавление репродукции вируса составило 60,0%.

Таблица 2
Изучение влияния препаратов на репродукцию вируса ЗН, штамм Eg 101 в культуре клеток GMK-AH-1(Д)
Препарат Доза препарата, мкг/мл Уровень накопления вируса, lg БОЕ/мл Уровень подавления репродукции вируса, Δ, lg Коэффициент ингибирования, процент
2 3 4 5 6
Соединение (1) 100 6,5 0,4 60,0
10 6,7 0,2 37,5
1 6,8 0,1 18,8
Рибавирин 100 5,0 1,9 98,6
Контроль дозы вируса - 6,9 - -

2. В отношении вируса гриппа A (H5N1)

Оценку эффективности в отношении вируса гриппа, штамм А/курица/Курган/2/05 (H5N1) проводили in vitro в культуре клеток МДСК. В качестве инфицирующего препарата использовали аллантоисную жидкость инфицированных РКЭ с биологической активностью 6,5 lg ЦПД50/мл.

Для изучения противовирусной эффективности соединение (1) и ремантадин вносили в поддерживающую среду через 1 час после инфицирования. На каждую дозу препарата использовали не менее 10 пробирок с монослоем культуры клеток двухсуточного возраста. Инфицирующая доза вируса составила 0,1 ЦПД50/клетку. После адсорбции вируса в течение 60 минут при температуре от (37,0±0,5)°С монослой трижды промывали питательной средой ПС-4 на растворе Хенкса, содержащей 2% сыворотки КРС и по 100 ЕД/мл пенициллина и стрептомицина, затем вносили свежую среду, содержащую различные концентрации исследуемых препаратов, и инкубировали в течение 3-х суток при температуре от (37,0±0,5)°С. По окончании инкубации визуально учитывали цитопатический эффект, вызванный в культуре клеток вирусом, с использованием светового микроскопа (объектив х 8-10, окуляр х 7-10).

Результаты изучения подавления цитопатической активности вируса гриппа препаратами в культуре клеток MDCK, представленные в таблице 3, свидетельствуют о том, что при использовании соединения (1) через 1 ч после инфицирования культуры клеток уровень подавления ЦПД вируса составил 40%.

Таблица 3
Оценка эффективности препаратов в отношении вируса гриппа, штамм А/курица/Курган/2/05 (H5N1) в культуре клеток MDCK по подавлению цитопатического действия вируса
Препарат Доза препарата, мкг/мл Частота выявления ЦПД, Х Подавление ЦПД, процент, Х±σх
Соединение (1) 100,0 19/30 36,6±3,3
10,0 25/30 16,7±3,3
1,0 10/10 0
Ремантадин 25 3/30 86,7±3,3
Контроль дозы - 30/30 -
Контроль среды - 0/10 -

В таблице 4 проведены результаты изучения подавления репродукции вируса в культуре клеток MDCK. Уровень накопления вируса оценивали титрованием проб по гибели РКЭ. Соединение (1) в максимальной концентрации также статистически значимо подавляет репродукцию вируса гриппа. При этом коэффициент ингибирования составил 98,2%. Препарат сравнения ремантадин практически полностью подавлял репродукцию вируса.

Таблица 4
Оценка эффективности препаратов в отношении вируса гриппа, штамм А/курица/Курган/2/05 (H5N1) в культуре клеток MDCK по подавлению репродукции вируса
Препарат Доза препарата, мкг/мл Схема внесения препарата Уровень накопления вируса, lg ЭЛД50/мл Уровень подавления накопления вируса, Δ, lg Коэффициент ингибирования, процент
Соединение (1) 100 +1 ч 5,3 1,7 98,2
Ремантадин 25 +2 ч 2,0 5,0 99,99
Контроль - - 7,0 - -

Пример 4. Изучение эффективности препаратов на лабораторных животных 1. Изучение эффективности препаратов в отношении вируса гриппа А (H5N1)

Оценку эффективности в отношении вируса гриппа, штамм А/курица/Курган/2/05 (H5N1) проводили in vivo с использованием белых мышей массой 12-15 г. В качестве инфицирующего препарата использовали аллантоисную жидкость инфицированных РКЭ с биологической активностью 6,5 lg ЦПД50/мл, 9,01g ЭЛД50/мл, 5,0 lg ЛД50/мл.

Соединение (1) и соединение сравнения вводили белым мышам перорально по профилактической и лечебной схемам, а также по схеме экстренной профилактики.

Результаты изучения профилактической эффективности соединения в отношении экспериментальной формы гриппа у белых мышей, интраназально инфицированных вирусом гриппа, штамм А/курица/Курган/Россия/02/05 (H5N1), представлены в таблицах 5. Защита от гибели при использовании соединения (1) составила в среднем 20%.

Таблица 5
Изучение профилактической эффективности препаратов в отношении экспериментальной формы гриппа у белых мышей, интраназально инфицированных вирусом гриппа, штамм А/курица/Курган/Россия/02/05 (H5N1)
Препарат Схема введения препарата Доза препарата,
мг/кг
Количество животных в группе Гибель животных Защитная эффективность от гибели, процент Среднее время жизни животных в группе, дни Увеличение средней продолжительности жизни, Δ, дни
-120 ч… 9,4 0,7
Соединение (1) -24 ч, -1 ч 50 20 16 20
60 20 11 47 11,3 2,8
Арбидол -24 ч, -1 ч
30 20 11 45 11,6 2,5
Контроль дозы - - 20 20 - 8,7 -
Контроль стада - - 20 0 - 14 -

Результаты изучения эффективности соединения (1) и препаратов сравнения при применении его по схеме экстренной профилактики и лечебной схеме, представленные в таблицах 6 и 7, свидетельствуют об эффективности заявляемого соединения.

Таблица 6
Изучение эффективности в отношении экспериментальной формы гриппа у белых мышей, интраназально инфицированных вирусом гриппа, штамм А/курица/Курган/Россия/02/05 (H5N1) при введении его по схеме экстренной профилактики
Препарат Схема введения препарата Доза препарата, мг/кг Частота гибели животных Защитная эффективность от гибели, процент Среднее время жизни животных в группе, дни Увеличение средней продолжительности жизни, Δ, дни
Соединение (1) +1 ч, +24 ч, +48 ч, +72 ч, +96 ч, +120 ч, 144 ч 50 10/20 50 11,7 3,5
Арбидол 30 16/20 20 9,4 1,2
Контроль дозы - - 20/20 - 8,2
Контроль стада - - 0/20 - 14,0 -

Таблица 7
Изучение лечебной эффективности препаратов в отношении экспериментальной формы гриппа у белых мышей, интраназально инфицированных вирусом гриппа, штамм А/курица/Курган/Россия/02/05 (H5N1)
Препарат Схема введения препарата Доза препарата, мг/кг Частота гибели животных Защитная эффективность от гибели, % Среднее время жизни животных в группе, дни Увеличение средней продолжительности жизни, Δ, дни
Соединение (1) +24 ч, +48 ч, +72 ч, +96 ч, 15/20 25 8,4 1,7
+120 ч, +144 ч 50
Арбидол +24 ч, +48 ч, +7 135 18/20 10 7,1 0,4
2 ч, +96 ч
Контроль дозы - - 20/20 - 6,7 -
Контроль стада - - 0/20 - 14,0 -

2. Изучение эффективности в отношении вируса Западного Нила

Для оценки протективной эффективности белых мышей инфицировали подкожно в дозе 10ЛД50. Препараты вводили перорально в дозе 50 мг/кг по следующим схемам: профилактика - в течение 6 суток до инфицирования раз в день и за 1 ч до инфицирования; экстренная профилактика - через 1 ч после инфицирования и далее в течение 5 суток; лечение - через 24 ч после инфицирования и далее в течение 6 суток. Результаты оценки эффективности, представленные в таблице 8, свидетельствуют о том, что соединение (1) эффективно в отношении экспериментальной формы ЛЗН у белых мышей и защищает от гибели 20% инфицированных животных. При этом удлинение СВЖ составило 2,3 суток. При экстренной профилактике защитная эффективность составила 20%.

Таблица 8
Результаты оценки эффективности препаратов в отношении экспериментальной формы лихорадки Западного Нила у белых мышей
Препарат Схема Коэффици-
ент
защиты, %
Среднее время жизни, сутки Удлинение среднего времени жизни, Δ сутки Уровень накопления вируса в головном мозгу павших животных
lg БОЕ/мл Δ, lg
-144 ч, -120 ч, -96 ч, 20,0 14,5 2,3 7,4 0,9
-72 ч, -48 ч, -24 ч, -1 ч
Соединение +1 ч, +24 ч, +48 ч, +72 ч, 20,0 14,0 1,8 7,5 0,8
(1) +96 ч, +120 ч, +144 ч
+24 ч, +48 ч, +72 ч, +9 0 12,1 0 8,5 0
6 ч, +120 ч, +144 ч
-72 ч, -48 ч, -24 ч, -1 ч 50,0 17,1 4,9 6,1 2,2
+1 ч, +24 ч, +48 ч, +72 ч, 85,0 21,0 8,8 0 8,3
Рибавирин +96 ч, +120 ч, +144 ч
+24 ч, +48 ч, +72 ч, +9 10,0 12,3 0,1 7,8 0,5
6 ч, +120 ч, +144 ч
Контроль дозы - - 12,2 - 8,3 -
Контроль стада - - 21,0 - -

Таким образом, лекарственное средство, содержащее в качестве активной составляющей соединение (1) - 2-метилтио-5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7(3Н)-он, обладает высоким противовирусным действием, превышающим действие известных лекарственных средств, и может быть использовано в качестве противовирусного средства.

Лекарственное средство, обладающее противовирусным действием и содержащее 2-метилтио-5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7(3Н)-он формулы



 

Похожие патенты:

Изобретение относится к новым диазаиндолдикарбонилпиперазинильным соединениям формулы I, включая его фармацевтически приемлемые соли, которые обладают противовирусной активностью и могут быть использованы для лечения ВИЧ-инфекции.

Изобретение относится к селективнм противотуберкулезным агентам, представляющим собой замещенные 7-арил(гетерил)-4,7-дигидро-1,2,4-триазоло[1,5-а]пиримидины общей формулы А или Б или фармацевтически приемлемые аддитивные натриевые или калиевые соли соединения Б где в формуле A R1 = атом водорода; R2 = арил, выбранный из возможно замещенного фенила или гетерил, выбранный из тиенила, пиридила, индолила, пирролила, при этом замещенный фенил имеет 1-3 заместителя, выбранных из группы, включающей метокси-, нитро-, гидроксигруппу, а в формуле Б R1 = атом водорода, С1-С12 алкил или С1-С12тиоалкил; R2 = арил, выбранный из возможно замещенного фенила или гетерила, выбранного из тиенила, пиридила, индолила, пирролила, при этом замещенный фенил имеет 1-3 заместителя, выбранных из группы, включающей метилендиоксигруппу, гидроксигруппу, нитро, бром, C1-С6алкил, C1-С6 алкокси, а в замещенном гетериле заместитель выбирается из брома, C1-С6алкокси, C1-С6 алкила.

Изобретение относится к соединению общей формулы 1 или его таутомеру или фармацевтически приемлемой соли, где W выбран из N и CR4; Х выбран из CH(R8), О, S, N(R8), C(=O), C(=O)O, C(=O)N(R8), OC(=O), N(R8)C(=O), C(R8)=CH и C(=R 8); G1 - бициклическое или трициклическое конденсированное производное азепина, выбранное из общих формул 2-9, или производное анилина общей формулы 10, где А1, А4, А 7 и А10 независимо выбраны из СН2 , С=O, О и NR10; А2, А3, А 9, А11, А13, А14, А 15, А19 и А20 независимо выбраны из СН и N; либо А5 означает ковалентную связь, и А 6 представляет собой S; либо А5 означает N=CH, и А6 представляет собой ковалентную связь; А8 , А12, А18 и А21 независимо выбраны из СН=СН, NH, NCH3 и S; А16 и А 17 оба представляют собой CH2, или один из А 16 и А17 представляет собой СН2, а другой выбран из С=O, СН(ОН), CF2, О, SOc и NR10; Y выбран из СН=СН или S; R1 и R2 независимо выбраны из Н, F, Cl, Br, алкила, CF 3 и группы O-алкил; R3 выбран из Н и алкила; R4-R7 независимо выбраны из Н, F, Cl, Br, алкила, CF3, ОН и группы O-алкил; R8 выбран из Н, (СН2)bR9 и (C=O)(CH 2)bR9; R9 выбран из Н, алкила, возможно замещенного арила, возможно замещенного гетероарила, ОН, групп O-алкил, ОС(=O)алкил, NH2, NHалкил, N(алкил) 2, СНО, CO2Н, CO2алкил, CONH 2, CONHалкил, CON(алкил)2 и CN; R10 выбран из Н, алкила, группы СОалкил и (CH2)d OH; R11 выбран из алкила, (CH2)d Ar, (CH2)dOH, (CH2)d NH2, группы (CH2)dСООалкил, (CH2)dCOOH и (CH2)d OAr; R12 и R13 независимо выбраны из Н, алкила, F, Cl, Br, СН(ОСН3)2, CHF2 , CF3, групп СООалкил, CONHалкил, (CH2) dNHCH2Ar, CO(алкил)2, СНО, СООН, (CH2)dOH, (CH2)dNH 2, N(алкил)2, CONH(CH2)d Ar и Ar; Ar выбран из возможно замещенных гетероциклов или возможно замещенного фенила; а выбран из 1, 2 и 3; b выбран из 1, 2, 3 и 4; с выбран из 0, 1 и 2; и d выбран из 0, 1, 2 и 3.

Изобретение относится к новым пирролопиримидиноновым производным формулы (I) и их фармацевтически приемлемым солям, обладающим свойствами ингибитора GSK-3, а также к промежуточным соединениям формулы (Ic).

Изобретение относится к новым пиримидиновым соединениям формулы (I), которые обладают свойствами селективного ингибитора киназы КДР и ФРФР. .

Изобретение относится к производным 3-аминокапролактама формулы (I): где Х представляет собой -CO-R1 или -SO2-R2, R1 представляет собой алкильный (за исключением 5-метилгептанила и 6-метилгептанила, где радикал R1 присоединен к карбонилу в положении 1), галогеналкильный, алкокси (за исключением трет-бутилокси), алкенильный, алкинильный или алкиламино радикал из 4-20 атомов углерода (например, из 5-20 атомов углерода, 8-20 атомов углерода, 9-20 атомов углерода, 10-18 атомов углерода, 12-18 атомов углерода, 13-18 атомов углерода, 14-18 атомов углерода, 13-17 атомов углерода) и R2 представляет собой алкильный радикал из 4-20 атомов углерода (например, из 5-20 атомов углерода, 8-20 атомов углерода, 9-20 атомов углерода, 10-18 атомов углерода, 12-18 атомов углерода, 13-18 атомов углерода, 14-18 атомов углерода, 13-17 атомов углерода); или к его фармацевтически приемлемой соли.

Изобретение относится к биологически активному соединению изопропиламид 2-[4-(4,6-диметил-2-пиримидилсульфамил)анилино]цинхониновой кислоты формулы Технический результат - получение нового соединения, которое может найти применение в медицине в качестве противовоспалительного и анальгетического средства.

Изобретение относится к области органической химии, к новым биологически активным веществам класса N-гетериламидов 2-(2-гидроксифенил)-2-оксоэтановой кислоты, а именно к N-[2-(5-этил-1,3,4-тиадиазолил)]амиду 2-(2-гидроксифенил)-2-оксоэтановой кислоты (1) формулы обладающего противовоспалительной и анальгетической активностью, что позволяет предположить его использование в медицине в качестве лекарственного противовоспалительного и анальгетического средства.

Изобретение относится к новым 4-(метилсульфониламино)фенильным аналогам общей формулы (I): в которой А представляет собой CONH, NHCO, NHC(=S)NH, NHC(=O)NH;R1-R4 независимо представляют собой по меньшей мере один радикал, выбранный из следующей группы: водород, атом галогена, цианогруппа, нитрогруппа, низшая алкоксигруппа, содержащая от 1 до 3 атомов углерода, остаток карбоновой кислоты, алкильная сложноэфирная группа, содержащая от 1 до 6 атомов углерода, бензиламидная группа, пиперидино-, морфолино- или пиперазиногруппа;R 5 и R6 независимо представляют собой по меньшей мере один радикал, выбранный из следующей группы: водород, линейная или разветвленная алкильная группа, содержащая от 1 до 6 атомов углерода, циклоалкильная группа, содержащая от 1 до 6 атомов углерода и фенильная или бензильная группа, необязательно замещенная по меньшей мере одним заместителем, выбранным из атома галогена и алкильной группы, содержащей от 1 до 6 атомов углерода, при условии, что оба радикала R5 и R6 одновременно не представляют собой атом водорода; В представляет собой группу, выбранную из: в которых R7-R17 независимо представляют собой по меньшей мере один радикал, выбранный из следующей группы: водород, атом галогена и линейная или разветвленная алкильная группа, содержащая от 1 до 6 атомов углерода, необязательно замещенная более чем одним атомом галогена,С представляет собой группу, выбранную из алкильной, алкенильной и алкинильной группы, содержащей от 1 до 5 атомов углерода, которая может включать атом кислорода, m, n, р, q, r и s означает целое число от 0 до 3;обозначение * и обозначение (---) означают хиральный атом углерода и двойную связь или простую связь соответственно,а также к фармацевтическим композициям, включающим указанные соединения.

Изобретение относится к применению S1P (сфингозин-1-фосфата). .

Изобретение относится к химико-фармацевтической промышленности и медицине и касается высокоэффективных синтетических регенерирующих противовоспалительных препаратов не пептидной природы, которые могут применяться в медицине для лечения хориоретинальных дистрофий различной этиологии, в том числе туберкулезного характера.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для лечения и профилактики рецидива злокачественных опухолей женской репродуктивной системы.
Наверх