Способ очистки аминового раствора процесса очистки газов от сероводорода и углекислого газа

Изобретение относится к способам очистки аминового раствора, применяемого для выделения из природного газа сероводорода и углекислого газа, и может быть использовано в нефтегазоперерабатывающей промышленности. Очистку аминового раствора процесса очистки газов от сероводорода и углекислого газа ведут путем экстракции из него полифениловым эфиром пенообразующих веществ при объемном соотношении «полифениловый эфир - аминовый раствор», равном 1:50-300. Отработанный полифениловый эфир подвергают регенерации путем его смешивания с метилэтилкетоном в объемном соотношении, соответственно равном 1:1-3, с последующим выделением пенообразующих веществ в осадок. После этого полученную смесь полифенилового эфира с метилэтилкетоном разделяют в отпарной колонне для повторного использования в процессе очистки. Изобретение позволяет поддерживать допустимый уровень содержания пенообразующих веществ в циркулирующем аминовом растворе, при этом обеспечивает восстановление экстракционных свойств полифенилового эфира и его повторное использование в процессе очистки аминового раствора. 1 ил., 2 табл.

 

Изобретение относится к способам очистки аминового раствора, применяемого для выделения из природного газа сероводорода и углекислого газа, и может быть использовано в нефтегазоперерабатывающей промышленности.

Вспенивание аминовых растворов - одна из серьезных проблем при эксплуатации установок очистки газа. Вспенивание приводит к нарушению режима работы установок, ухудшению качества очищенного газа и, как следствие этого, к необходимости снижения производительности установок по газу. Основной причиной вспенивания являются примеси, поступающие с сырым газом и попадающие в абсорбент (жидкие углеводороды, пластовая вода, механические примеси, ингибиторы коррозии, различные ПАВ, смолистые вещества и др.). Пенообразователями также являются смазочные масла, продукты коррозии и деградации амина.

Наиболее надежным способом борьбы со вспениванием является вывод примесей из системы. Этот метод более надежен, чем применение антивспенивателей, действие которых кратковременно. Некоторые антивспениватели хорошо гасят пену в момент ее образования, но при добавлении их в раствор до образования пены могут приводить к ее стабилизации. Иногда чрезмерное количество антивспенивателя также может привести к вспениванию.

В настоящее время задача очистки растворов аминов (вывода пенообразуюших веществ) в основном решается путем установки узла фильтрации. Как правило, он состоит из двух патронных и одного угольного фильтра. Патронные фильтры предназначены для очистки циркулирующего раствора от механических примесей, к которым можно отнести продукты коррозии оборудования и трубопроводов и частицы угля, уносимого раствором из угольного фильтра-адсорбера. Объем раствора, выводимого на фильтрацию от пенообразующих веществ, составляет 15-20% объема циркуляции в зависимости от типа применяемого амина и технологической схемы процесса. Часть аминового раствора подвергается очистке от растворимых примесей (балластовых соединений) на угольном фильтре-адсорбере, которые удаляют из раствора тяжелые углеводороды [Н.М.Бутина, Г.С.Широкова. Эффективное использование аминных ресурсов - ключ к рентабельности производства. Наука и прогресс. 2006, № 9, с.95-96].

Основными недостатками данного способа являются недостаточно высокая степень извлечения пенообразующих примесей в случае резкого повышения вспенивания аминового раствора, что обусловлено заданными значениями пропускной способности угольных фильтров, достаточно быстрая деактивация используемого активированного угля, приводящая к необходимости его регенерации путем пропарки водяным паром в атмосферу, а с истечением срока службы угля - замены на новый, что способствует образованию отходов отработанного угольного адсорбента (отвалов), загрязняющих окружающую среду.

Наиболее перспективным методом, по мнению авторов, является экстракционный, позволяющий оперативно реагировать на поступление в раствор пенообразующих веществ путем увеличения соотношения «аминовый раствор - экстрагент», а также за счет увеличения доли поглотительного раствора, подаваемого на экстракционную очистку.

Наиболее близким к заявляемому по совокупности существенных признаков и достигаемому результату является способ очистки аминового раствора процесса очистки газов от сероводорода и углекислого газа путем экстракции из него полифениловым эфиром пенообразующих веществ [А.М.Спасенков, О.П.Лыков, В.И.Лазарев. Экстракционный метод устранения вспенивания алканоламиновых растворов на установках очистки газов от H2S и CO2. Нефтепереработка и нефтехимия. 2005, № 11, с.37-39]. Авторами экспериментально подтверждена эффективность полифенилового эфира по удалению из циркулирующего аминового раствора веществ, способствующих образованию пены. Полифениловый эфир марки 5Ф-4Э [(C6H5OC6H5)n, плотность 1,2 г/см3, температура кипения 200°С] обладает высокой селективностью, достаточно высокой разностью плотностей с аминовым раствором (плотность раствора в среднем 1,072-1,078 г/см3), минимальной растворимостью в воде и нерастворимостью в нем аминов, что позволяет четко разделять аминовый раствор от пенообразующих веществ.

Задачей заявляемого изобретения является разработка процесса регенерации полифенилового эфира для его многократного использования и определение оптимальных соотношений применяемых реагентов.

Поставленная задача решается тем, что в способе очистки аминового раствора процесса очистки газов от сероводорода и углекислого газа путем экстракции из него полифениловым эфиром пенообразующих веществ экстракцию ведут при объемном соотношении «полифениловый эфир - аминовый раствор», равном 1:50-300, отработанный полифениловый эфир подвергают регенерации путем его смешивания с метилэтилкетоном в объемном соотношении, соответственно равном 1:1-3, с последующим отделением пенообразующих веществ в осадок, после чего смесь полифенилового эфира с метилэтилкетоном разделяют в отпарной колонне для повторного использования в процессе очистки.

Метилэтилкетон (2-бутанон) CH3COC2H5, бесцветная легколетучая жидкость, температура кипения 79,6°С, плотность при 20°С составляет 0,805 г/см3, смешивается с органическими растворителями. Применяют метилэтилкетон в качестве растворителя перхлорвиниловых, нитроцеллюлозных, полиакриловых лакокрасочных материалов и клеев, типографских красок, депарафинизации смазочных масел и обезмасливания парафинов.

Авторами экспериментально установлено, что при смешивании полифенилового эфира, насыщенного пенообразующими веществами, с метилэтилкетоном происходит повторная жидкостная экстракция, но теперь уже метилэтилкетон выделяет из насыщенного раствора полифениловый эфир благодаря их неограниченной взаиморастворимости, а пенообразующие вещества при этом выпадают в осадок. Образовавшаяся смесь полифенилового эфира с метилэтилкетоном легко разделяется в отпарной колонне за счет значительной разности их температур кипения.

Выбранное объемное соотношение полифенилового эфира к аминовому раствору обусловлено тем, что чрезмерное разбавление смеси ниже объемного соотношения 1:300 нерационально, поскольку экстракционная активность полифенилового эфира значительно снизится, а объемное соотношение свыше 1:50 экономически нецелесообразно.

Выбранное объемное соотношение полифенилового эфира к метилэтилкетону обусловлено тем, что объемное соотношение ниже 1:3 будет приводить к неоправданному расходу метилэтилкетона, а выше 1:1 недостаточно для их полного взаиморастворения и отделения смеси от выделившихся в осадок пенообразующих веществ.

Технический результат, получаемый от определения оптимального объемного соотношения полифенилового эфира к аминовому раствору, состоит в обеспечении возможности путем изменения объемного соотношения регулировать в широких пределах экстракционные свойства полифенилового эфира в зависимости от состава аминового раствора и концентрации присутствующих в нем пенообразующих веществ, а также в возможности при необходимости увеличения доли циркулирующего аминового раствора, подаваемого на экстракционную очистку, до 50% от всего объема (против 15-20% при очистке через угольные фильтры).

Технический результат, получаемый от того, что полифениловый эфир подвергается регенерации, включающей его смешивание с метилэтилкетоном в объемном соотношении, равном 1:1-3, последующее отделение пенообразующих веществ в осадок и разделение смеси полифенилового эфира с метилэтилкетоном в отпарной колонне, состоит в восстановлении экстракционных свойств полифенилового эфира и его повторное использование в процессе очистки аминового раствора, т.е. в создании замкнутого цикла циркуляции экстрагента, а следовательно, в увеличении длительности его использования.

На чертеже приведена схема установки, реализующей предлагаемый способ.

Установка содержит емкость хранения амина 1 с насосом 2, аппарат воздушного охлаждения 3, фильтр для очистки от механических примесей 4, емкость хранения полифенилового эфира 5 с насосом 6, теплообменник 7, разделители 8 и 9, емкость хранения метилэтилкетона 10 с насосом 11, отстойник 12, отпарную колонну 13.

Аминовый раствор с температурой 90-100°С из емкости ее хранения 1 подается насосом 2 на охлаждение в аппарат воздушного охлаждения 3, где он охлаждается до температуры 60°С, и поступает в фильтр для очистки от механических примесей 4. В поток очищенного от механических примесей раствора амина впрыскивается полифениловый эфир, подаваемый из емкости его хранения 5 насосом 6. Полученная смесь аминового раствора с полифениловым эфиром проходит сначала теплообменник 7, охлаждая раствор метилэтилкетона, и поступает в разделитель 8, снабженный внутренними перегородками, в котором из-за разности плотностей происходит разделение аминового раствора и полифенилового эфира, насыщенного пенообразующими примесями. Очищенный раствор амина из верхней части разделителя отводится в емкость его хранения 1. На этом цикл по экстракции раствора амина заканчивается.

Затем начинается цикл регенерации полифенилового эфира от пенообразущих веществ. В поток насыщенного полифенилового эфира, выводимого с низа разделителя 8, впрыскивается метилэтилкетон, подаваемый из емкости его хранения 10 насосом 11. Полученная смесь поступает в разделитель 9. В разделителе 9 полифениловый эфир растворяется в метилэтилкетоне и полученная смесь располагается в верхней части разделителя, в то время как пенообразующие примеси выпадают в осадок. Пенообразующие примеси выводятся из нижней части разделителя 9 в отстойник 14 для дальнейшей их утилизации. Смесь полифенилового эфира с метилэтилкетоном поступает в среднюю часть отпарной колонны 13. Разделение полифенилового эфира и метилэтилкетона происходит за счет изменения фазового состояния смеси. Колонна снабжена тарелками для более эффективного разделения смеси. В кубовой части колонны нагрев осуществляется раствором амина, подаваемым на очистку в установку из емкости хранения 1 с температурой 85-100°С. Отпаренный метилэтилкетон с температурой 85°С отводится из верхней части колонны 13 через теплообменник 7, где он охлаждается и конденсируется, в емкость его хранения 10 для дальнейшего использования. Полифениловый эфир стекает по тарелкам и с температурой 90°С выводится из кубовой части отпарной колонны 13 в емкость его хранения 5 для дальнейшего использования.

Пример. Проводили лабораторные исследования процесса экстракции с целью определения оптимальной температуры экстракции и объемного соотношения экстрагент - аминовый раствор. В качестве исходного аминового раствора брали пробы из регенерированного потока амина с промышленной установки 1У370. Водный аминовый раствор содержит в среднем 25-35% смеси ДЭА и МДЭА и примеси пенообразующих веществ (плотность раствора 1,072-1,078 г/см3). В качестве экстрагента использовали полифениловый эфир марки 5Ф-4Э [(C6H5OC6H5)n, плотность 1,2 г/см3, температура кипения 200°С], который обладает минимальной растворимостью в воде и нерастворимостью в нем аминов. В термостатированную делительную воронку вводили 10 мл исходного аминового раствора. Пробу прогревали до заданной температуры, после чего добавляли 1 мл полифенилового эфира, нагретого до той же температуры. Полученную смесь встряхивали в течение 4 минут для ускорения распределения растворенных веществ между двумя жидкостями. Затем воронку закрепили в штативе для разделения фаз. По достижении равновесия очищенный аминовый раствор находился в верхнем слое, а насыщенный примесями полифениловый эфир - в нижнем. Каждый слой сливали в отдельные пробирки.

Исследование пенообразующих свойств исходных и подвергшихся экстракции аминовых растворов проводили в стеклянном термостатируемом аппарате (барботере). Испытуемый раствор 8 мл заливали в пенную колонку на фильтр Шота и продували через него воздух. Включали секундомер в момент появления первых пузырьков воздуха над фильтром. По истечении 3 минут замеряли высоту образующейся пены в колонне с помощью измерительной шкалы. Прекращали подачу воздуха, включали секундомер и замеряли стабильность пены (время разрушения пены) до появления зеркала раствора. Операции повторяли еще 2 раза, каждый раз дожидаясь полного опадания пены. За результат измерения принимали среднее арифметическое трех полученных значений. Результаты исследования приведены в таблице 1. Из таблицы видно, что оптимальными параметрами экстракционной очистки аминового раствора являются объемное соотношение полифенилового эфира к аминовому раствору в диапазоне от 1:50 до 1:300, время контакта не более 3 минут и температура в интервале от 50 до 70°С.

В следующей серии опытов было исследовано влияние объемного соотношения полифенилового раствора к метилэтилкетону на эффективность выведения пенообразующих веществ в зависимости от температуры, времени контакта. Результаты испытаний приведены в таблице 2. Как видно из таблицы, оптимальными условиями для наиболее полного извлечения пенообразующих веществ являются объемное соотношение полифенилового эфира к метилэтилкетону, равное 1:1-3, температура 50-70°С и время контактирования 1-2 минуты.

Таким образом, использование заявляемого изобретения позволит поддерживать допустимый уровень содержания пенообразующих веществ в циркулирующем аминовом растворе путем изменения соотношения объема экстрагента к объему очищаемого раствора и/или увеличения доли циркулирующего аминового раствора, подаваемого на экстракционную очистку.

Таблица 1
№ опыта Испытываемый раствор Температура экстракции, °С Пенные характеристики раствора
Высота пены, мм Стабильность пены, с
1 Исходный аминовый раствор 50 62,5 115
2 Полифениловый эфир - аминовый раствор берут в объемном отношении 1:50 50 49,5 25
3 Полифениловый эфир - аминовый раствор берут в объемном отношении 1:150 50 50,5 30
4 Полифениловый эфир - аминовый раствор берут в объемном отношении 1:300 50 57,6 30
5 Исходный аминовый раствор 70 62,5 115
6 Полифениловый эфир - аминовый раствор берут в объемном отношении 1:50 70 43,5 4,1
7 Полифениловый эфир - аминовый раствор берут в объемном отношении 1:150 70 44,0 4,6
8 Полифениловый эфир - аминовый раствор берут в объемном отношении 1:300 70 46,0 5,1
9 Исходный аминовый раствор 90 62,5 115
10 Полифениловый эфир - аминовый раствор берут в объемном отношении 1:50 90 85,0 7,0
11 Полифениловый эфир - аминовый раствор берут в объемном отношении 1:150 90 92,5 9,2
12 Полифениловый эфир - аминовый раствор берут в объемном отношении 1:300 90 100 9,5

Таблица 2
Температура, °С Время контакта, мин Время оседания примесей, сек
Полифениловый эфир - метилэтилектон берут в объемном отношении
1:3 1:2 1:1
25 1 60 70 75
2 60 70 75
50 1 20 26 32
2 20 26 32
70 1 10 17 19
2 10 17 19

Способ очистки аминового раствора процесса очистки газов от сероводорода и углекислого газа путем экстракции из него полифениловым эфиром пенообразующих веществ, отличающийся тем, что экстракцию ведут при объемном соотношении «полифениловый эфир - аминовый раствор», равном 1:50-300, отработанный полифениловый эфир подвергают регенерации путем его смешивания с метилэтилкетоном в объемном соотношении, соответственно равном 1:1-3, с последующим выделением пенообразующих веществ в осадок, после чего смесь полифенилового эфира с метилэтилкетоном разделяют в отпарной колонне для повторного использования в процессе очистки.



 

Похожие патенты:

Изобретение относится к способу получения водородсодержащего газа с низким содержанием СО и CO2 по каталитической реакции паровой конверсии углеводородов в присутствии регенерируемого высокотемпературного поглотителя диоксида углерода CO 2.

Изобретение относится к процессам абсорбционной очистки газов от серосодержащих примесей и может быть использовано в процессах очистки газов различного состава. .

Изобретение относится к области газовой промышленности, криогенной технике. .

Изобретение относится к области адсорбционной очистки углеводородных газов от меркаптанов и сероводорода и может быть использовано в газовой, нефтяной и нефтехимической промышленности при регенерации цеолитов, используемых для этих целей.

Изобретение относится к криогенной технике и может быть широко использовано при создании блоков осушки от влаги в гелиевых ожижительных и рефрижераторных установках.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано на установках регенерации, насыщенных растворов гликолей и других абсорбентов, загрязненных минеральными солями.
Изобретение относится к способу подавления вспенивания водной системы. .
Изобретение относится к составам для снижения пенообразования в частности при водной дегазации растворов синтетических каучуков, и может быть использовано в производстве синтетических латексов и каучуков.
Изобретение относится к пищевой промышленности, в частности к сахарной. .

Изобретение относится к молочной промышленности. .

Изобретение относится к области химии, а именно к способам очистки бытовых и промышленных сточных вод. .

Изобретение относится к области химической технологии, а именно к технологии аминовой очистки газа от кислых компонентов, и предназначено для предупреждения вспениваемости рабочих растворов этаноламинов, используемых на газоперерабатывающих заводах в качестве абсорбента, и гашения пены в случае ее возникновения.

Изобретение относится к области нейтрализации сероводорода в водно-нефтяных средах химическими веществами и может быть использовано в нефтяной промышленности. .
Изобретение относится к пищевой промышленности, в частности к сахарной. .

Изобретение относится к пеногашению в щелочных водных растворах и может быть использовано в производстве аммиака из природного газа на стадии этаноламиновой очистки конвертированного газа от диоксида углерода.
Изобретение относится к получению и использованию композиций, контролирующих пенообразование, особенно в водных средах

Изобретение относится к технологии получения термосвариваемых пластиковых пленочных и листовых структур и может быть использовано для упаковки чувствительных к кислороду продуктов

Изобретение относится к композициям для контроля пенообразования для систем жидких детергентов. Предложена композиция для контроля пенообразования, содержащая: (А) кремнийорганический антивспенивающий агент, содержащий (i) органополисилоксан, имеющий по меньшей мере один связанный с кремнием заместитель формулы Х-Ar, где Х представляет собой двухвалентную алифатическую группу, связанную с атомом кремния через атом углерода, а Ar представляет собой ароматическую группу, (ii) кремнийорганический полимер формулы R1 aSiO(4-a)/2, где R1 представляет собой углеводородную группу, углеводородокси или гидроксил, и а имеет среднее значение от 0,5 до 2,4, и (iii) гидрофобный наполнитель, и (В) органополисилоксановую смолу, содержащую по меньшей мере одну полиоксиалкиленовую группу, а также тетрафункциональные силоксановые звенья формулы SiO4/2 и монофункциональные силоксановые звенья формулы R2 3SiO1/2, причем общее число тетрафункциональных силоксановых звеньев в смоле составляет не менее 50% от общего числа силоксановых звеньев, а R2 представляет собой углеводородную группу. Предложен также жидкий детергент, содержащий одно или несколько поверхностно-активных веществ, воду и указанную композицию для контроля пенообразования. Технический результат - предложенная композиция безопасна и инертна по отношению к компонентам детергента, обеспечивает стабильность смеси в детергентах и отлично контролирует пенообразование. 2 н. и 2 з.п. ф-лы, 1 ил., 2 табл., 8 пр.

Изобретение относится к полимерной композиции пеногасителя. Описана композиция пеногасителя, содержащая 15-35% масс. акрилатного полимера, содержащего акрилатные мономеры следующей общей формулы: где R представляет собой водород, или линейную, или разветвленную алкильную группу, содержащую приблизительно от 1 до 18 атомов углерода и, необязательно, по меньшей мере, одну гидроксильную группу; 1-20 мол.% мономера (мет)акриловой кислоты в подходящем разбавителе, 30-70% масс. органического носителя, где органический носитель представляет собой полипропиленгликоль; 3-10% масс. добавок; и 5-25% масс. поверхностно-активного вещества. Описана композиция пеногасителя, содержащая 15-35% масс. метакрилатного полимера, содержащего метакрилатные мономеры следующей общей формулы: где R представляет собой водород или линейную, или разветвленную алкильную группу, содержащую приблизительно от 1 до 18 атомов углерода и, необязательно, по меньшей мере, одну гидроксильную группу; с 1-20 мол.% мономера метакриловой кислоты в подходящем разбавителе; 30-70% масс. органического носителя, где органический носитель представляет собой полипропиленгликоль; 3-10% масс. добавки; и 5-25% масс. поверхностно-активного вещества. Также описан способ снижения или предотвращения образования пены, включающий добавление указанных выше композиций пеногасителя до, во время или после образования указанной пены. Также описан способ получения указанных выше композиций пеногасителя. Технический результат - увеличение эффективности пеногашения. 6 н. и 24 з.п. ф-лы, 40 табл., 10 пр.
Наверх