Способ покусковой сепарации минерального сырья

Изобретение относится к области обогащения полезных ископаемых и, в частности его можно использовать в методах покусковой сепарации как радиоактивных, так и не радиоактивных руд. Способ покусковой сепарации минерального сырья по содержанию компонента включает покусковую подачу рудных кусков в зону измерения, регистрацию гамма-излучения, разделение рудных кусков на продукты обогащения по величине превышения сигналом установленного порога настройки. Регистрацию гамма-излучения осуществляют для трех классов крупности с одинаковым порогом настройки, равным порогу настройки для среднего класса крупности. Скорость перемещения рудных кусков в зоне измерения для каждого класса крупности устанавливают равной произведению величины скорости перемещения рудных кусков в зоне измерения для среднего класса крупности на отношение линейного размера рудного куска со средней массой измеряемого класса крупности к линейному размеру рудного куска со средней массой в среднем сортируемом классе крупности, а полученную величину умножают на отношение числа зарегистрированных импульсов в секунду от рудного куска с граничным содержанием полезного компонента измеряемого класса крупности к числу зарегистрированных импульсов в секунду от рудного куска с граничным содержанием полезного компонента среднего класса крупности. Технический результат - повышение эффективности процесса сепарации всей рудной массы класса крупности -200+25 мм. 4 табл.

 

Изобретение относится к области обогащения полезных ископаемых и, в частности, его можно использовать в методах покусковой сепарации как радиоактивных, так и не радиоактивных руд.

Известно, что эффективность процесса сепарации, в значительной степени, зависит от разброса рудных кусков по массе в сортируемом классе. Чем меньше этот разброс, тем выше эффективность процесса сепарации (Мокроусов В.А. и др. «Теоретические основы радиометрического обогащения радиоактивных руд» Недра, M. 1968 г. стр.11-112).

Известен способ покусковой сепарации минерального сырья, в котором повышение эффективности сепарации достигается с помощью частичного учета массы рудного куска в режиме регистрации гамма-излучения при постоянной экспозиции и постоянном пороге настройки за счет включения в схему радиометра специального дополнительного электронного устройства (см. кн. И.И.Крейндлин и др. «Приборы для радиометрического обогащения руд» М., Атомиздат, 1972 г., стр.179-188).

Недостатком данного способа является снижение надежности радиометра за счет усложнения его схемы и низкая точность в определении массы рудного куска.

Кроме того, данный режим регистрации гамма-излучения обеспечивает оптимальный режим измерения только для рудных кусков со средней массой в сортируемом классе.

Известен способ, позволяющий повысить эффективность процесса сепарации. Для этого вся рудная масса, поступающая на обогатительную фабрику, вначале дробится до крупности -200 мм, а затем грохочется на 3-4 класса крупности. Например, -200+100 мм, -100+50 мм, -50+25 мм.

Количество классов крупности выбирают в зависимости от контрастности исследуемой руды. При этом режим сепарации для каждого класса крупности выбирают индивидуально.

Так экспозиция измерения определяется исходя из линейного размера рудного куска со средней массой в сортируемом классе. Каждый класс крупности сортируется при индивидуальном пороге настройки и по своей вероятной кривой разделения, что является главной причиной ограничения эффективности сепарации (Мокроусов В.А. и др. «Теоретические основы радиометрического обогащения радиоактивных руд» Недра, M. 1968 г. стр.117-133).

Наиболее близким является способ покусковой сепарации по содержанию полезного компонента, включающий покусковую подачу рудных кусков в зону измерения, регистрацию гамма-излучения, разделение рудных кусков на продукты обогащения по величине превышения сигналом установленного порога настройки. Регистрацию гамма-излучения производят от рудных кусков с экспозицией и порогом настройки, выбранными индивидуально для каждого рудного куска (см. кн. И.И.Крейндлин и др. «Приборы для радиометрического обогащения руд» М., Атомиздат, 1972 г., стр.182-184).

Техническим результатом предлагаемого изобретения является создание таких условий измерения, которые позволят повысить эффективность процесса сепарации всей рудной массы класса крупности 200+25 мм.

Технический результат достигается тем, что в известном способе сепарации минерального сырья по содержанию полезного компонента, включающий покусковую подачу рудных кусков в зону измерения, регистрацию гамма-излучения, разделение рудных кусков на продукты обогащения по величине превышения сигналом установленного порога настройки, согласно изобретению регистрацию гамма-излучения для трех классов крупности производят с одинаковым порогом настройки, равным порогу настройки для среднего класса крупности, при этом скорость перемещения рудных кусков в зоне измерения для каждого класса крупности устанавливают равным произведению величины скорости перемещения рудных кусков в зоне измерения для среднего класса крупности на отношение линейного размера рудного куска со средней массой измеряемого класса крупности к линейному размеру рудного куска со средней массой в среднем сортируемом классе крупности, а полученную величину умножают на отношение числа зарегистрированных импульсов в секунду от рудного куска с граничным содержанием полезного компонента измеряемого класса крупности к числу зарегистрированных импульсов в секунду от рудного куска с граничным содержанием полезного компонента среднего класса крупности.

При выполнении вышеназванных условий рудные куски каждого класса крупности со средней массой и одинаковом содержании полезного компонента будут сортироваться по одной вероятной кривой разделения, т.е. предложенный способ сепарации эквивалентен разбросу рудных кусков по массе не от -200 мм до +25 мм, а от - 100 мм до +50 мм, что является основным фактором повышения эффективности покусковой сепарации минерального сырья.

Пример

Приведены результаты сепарации урановой руды трех классов крупности -200+100 мм, -100+50 мм и -50+25 мм по прототипу и предлагаемому способу. Скорость перемещения рудных кусков в зоне измерения для каждого класса крупности рассчитывается по формуле

где Vcp - скорость перемещения рудных кусков в зоне измерения для среднего класса крупности;

lki - линейный размер рудного куска со средней массой измеряемого класса крупности;

lkcp - линейный размер рудного куска со средней массой среднего класса крупности;

nir - количество зарегистрированных импульсов в секунду от рудного куска со средней массой и граничным содержанием полезного компонента измеряемого класса крупности;

ncpr - количество зарегистрированных импульсов в секунду от рудного куска со средней массой и граничным содержанием полезного компонента среднего класса крупности.

В качестве детекторов ионизирующего излучения использовали блок детектирования типа БДЭГ-23 с размером кристалла 63×63 мм.

Результаты испытаний сведены в табл.1, 2, 3, и 4.

Анализ полученных данных показывает, что предложенный способ сепарации позволяет повысить эффективность сепарации за счет увеличения выхода хвостов с 54,72% до 58,4% и уменьшить содержание в них полезного компонента с 0,0132% до 0,012%.

Способ покусковой сепарации минерального сырья по содержанию компонента, включающий покусковую подачу рудных кусков в зону измерения, регистрацию гамма-излучения, разделение рудных кусков на продукты обогащения по величине превышения сигналом установленного порога настройки, отличающийся тем, что регистрацию гамма-излучения для трех классов крупности производят с одинаковым порогом настройки, равным порогу настройки для среднего класса крупности, при этом скорость перемещения рудных кусков в зоне измерения для каждого класса крупности устанавливают равной произведению величины скорости перемещения рудных кусков в зоне измерения для среднего класса крупности на отношение линейного размера рудного куска со средней массой измеряемого класса крупности к линейному размеру рудного куска со средней массой в среднем сортируемом классе крупности, а полученную величину умножают на отношение числа зарегистрированных импульсов в секунду от рудного куска с граничным содержанием полезного компонента измеряемого класса крупности к числу зарегистрированных импульсов в секунду от рудного куска с граничным содержанием полезного компонента среднего класса крупности.



 

Похожие патенты:

Изобретение относится к обогащению полезных ископаемых, а именно к способам рентгенолюминесцентного обогащения дробленого минерального материала крупных фракций, размер которых сравним с протяженностью зоны возбуждения-регистрации сепаратора.

Изобретение относится к области добычи полезных ископаемых, а именно к способам обогащения дробленого минерального материала. .

Изобретение относится к области обращения твердых радиоактивных отходов. .

Изобретение относится к области обогащения полезных ископаемых, содержащих люминесцирующие под воздействием излучения минералы. .

Изобретение относится к области обогащения и сортировки полезных ископаемых, а именно к рентгенолюминесцентной сепарации алмазов, и может быть использован при обогащении алмазосодержащих руд.

Изобретение относится к области обогащения полезных ископаемых, содержащих минералы, люминесцирующие под воздействием излучения, и может быть использовано при обогащении алмазосодержащих руд и сортировке алмазов.

Изобретение относится к области обогащения полезных ископаемых и, в частности, его можно использовать в методах покусковой сепарации как радиоактивных, так и нерадиоактивных руд.

Изобретение относится к области обогащения минерального сырья и, в частности, оно может быть использовано как для радиометрического, так и нейтронно-активационного методов обогащения урановых руд.

Изобретение относится к способам автоматической сортировки руд и предназначено, в частности, для извлечения алмазов из алмазосодержащих смесей минералов, например, из концентратов предварительного обогащения

Изобретение относится к обогащению полезных ископаемых и может быть использовано при кусковой радиометрической сепарации руд

Изобретение относится к обогащению полезных ископаемых и может быть использовано при кусковой или поточно-кусковой радиометрической сортировке руд

Изобретение относится к области обогащения твердых полезных ископаемых, а именно к способам обогащения редкометаллических руд. Способ обогащения эвдиалитовых руд включает применение электромагнитной сепарации в сильном поле с выделением в немагнитную фракцию нефелин-полевошпатового концентрата и последующую электрическую сепарацию магнитных фракций с получением эгиринового и эвдиалитового концентратов. В голове процесса осуществляют рентгенорадиометрическую сепарацию руды с суммарным вторичным характеристическим излучением Кα1-серии элементов стронция, иттрия, циркония и ниобия в энергетическом диапазоне 13,0-17,5 кэВ. Технический результат - повышение эффективности извлечения эвдиалитового концентрата, снижение затрат на дробление и измельчение руды, а также сокращение количества перечистных операций. 1 ил., 1 табл., 1 пр.

Изобретение относится к обогащению твердых полезных ископаемых и может быть использовано при покусковой радиометрической сепарации комплексных руд и техногенного сырья и, в частности, рудных отвалов. Технический результат - повышение производительности рентгенофлуоресцентной сепарации, возможность повышения качества продуктов сепарации руд, характеризующихся неравномерностью минерализации различных сторон куска и расширение круга обогащаемых полезных ископаемых. По способу осуществляют подачу кусков после вибропитателя на раскладчик. Осуществляют облучение этих кусков рентгеновскими лучами и измерение вторичного излучения детекторами, облучение системой освещения и измерение оптическими средствами, отсечку пневмоотсекателем с выдувающими соплами под управлением компьютерных средств в зависимости от сигналов детекторов рентгеновского излучения и оптических средств. При этом раскладку кусков осуществляют с помощью ленточного транспортера и лотка, неподвижного относительно рамы транспортера. Обеспечивают скорость ленты, позволяющей создать монослой кусков руды, движущихся после схода с ленты по параболическим траекториям, образующим параболическую поверхность. Используют комплект рентгеновских излучателей в количестве по меньшей мере одного и детекторов, измеряющих вторичное рентгеновское излучение кусков, возбужденное этими рентгеновскими излучателями. Излучатели располагают снизу и/или сверху поверхности траекторий. При этом рентгеновские излучатели, расположенные с одной или двух сторон поверхности траекторий, ориентируют щелями их коллиматоров таким образом, что пучки рентгеновских лучей создают участок облучения поверхности траекторий в виде полосы, перпендикулярной траекториям кусков. Снизу и/или сверху поверхности траекторий располагают цифровую видеокамеру с системой освещения 2 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к способу предварительной концентрации твердых полезных ископаемых и может использоваться для предварительного обогащения руд черных и цветных металлов. Способ предконцентрации твердых полезных ископаемых заключается в том, что перед формированием планового рудопотока, по данным первичного геолого-геофизического кернового опробования осуществляют выявление неравномерности распределения твердых полезных ископаемых в недрах путем анализа фракционного состава руды по содержаниям полезных, вредных компонентов, степеней контрастности и обогатимости руд в недрах с определением теоретически достижимых плановых показателей совместной переработки горнорудной массы для отдельных групп разведочных скважин (эксплуатационных блоков). Формирование планового рудопотока заданного качества проводят по граничному содержанию полезных, вредных компонентов посредством радиометрической порционной сортировки в транспортных емкостях с использованием рудоконтролирующих станций (РКС). Граничное значение признака разделения горнорудной массы на РКС устанавливают по содержанию полезных компонентов, равному середине линейной области селективного режима разделения руд при кусковой сепарации по результатам анализа семейства кривых контрастности и обогатимости руд в недрах месторождения. Граничный режим разделения выбирают так, чтобы содержание полезных компонентов в обедненном продукте РКС равнялось середине линейной области селективного разделения руд при кусковой сепарации, выраженной в единицах содержания полезного, вредного компонента. Обедненный продукт РКС дробят до крупности, регламентируемой способом последующей кусковой сепарации, разделяют на машинные и немашинные классы и проводят кусковую сепарацию машинных классов с направлением обогащенного продукта РКС, концентрата кусковой сепарации и немашинных классов на фабричную переработку, а отвальной пустой породы со стадии кусковой сепарации с массовой долей ценных компонентов, не превышающей принятого кондициями бортового содержания ценного компонента, в отвал. Технический результат - повышение эффективности обогащения руд за счет уменьшения степени разубоживания добываемой руды, снижения необратимых потерь ценных компонентов и объемов направляемого на фабричное обогащение минерального сырья при повышении и стабилизации его качества, а также повышения полноты выемки рудной массы из недр. 3 з.п. ф-лы, 3 табл.
Наверх