Теплотрубный осевой двигатель

Изобретение относится к машиностроению. Теплотрубный осевой двигатель включает помещенные в одном корпусе испарительную камеру, покрытую изнутри фитилем, верхняя торцевая стенка которой покрыта полосами пористого материала, внутри которой располагается перфорированный сепарационный щит, конечный участок напорного трубопровода с форсункой и находящуюся в контакте с горячей средой, отделенную от нее перегородкой рабочую камеру, заполненную фитилем, в которой помещен корпус с размещенной в нем силовой турбиной, рабочее колесо которой и ротор питательного насоса насажены на вал, цилиндрический резервуар, сообщающийся через перфорированные стенки с фитилем, конденсационную камеру, также изнутри покрытую фитилем, являющимся продолжением фитиля рабочей камеры, и находящуюся в контакте с холодной средой. Внутри испарительной камеры помещен весь напорный трубопровод. Внутри рабочей камеры по продольной оси корпуса двигателя сверху вниз на валу поочередно помещены питательный насос и колесо силовой турбины. Питательный насос соединен с напорным трубопроводом, корпус которого находится в цилиндрическом резервуаре, днище которого помещено на верхней стенке корпуса силовой турбины. Внутри конденсационной камеры по ее продольной оси и центру нижней торцевой стенки проходит вал, снабженный пропеллером и соединенный снаружи с рабочим органом. Использование изобретения позволит повысить надежность и эффективность теплотрубного двигателя. 3 ил.

 

Предлагаемое изобретение относится к энергомашиностроению и может быть использовано для утилизации вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно для трансформации тепловой энергии в механическую.

Известно устройство (тепловой двигатель) для утилизации тепла огнетехнического агрегата, содержащее последовательно соединенные между собой парогенератор (испарительную камеру), подключенный к огнетехническому агрегату (горячей среде), силовую турбину, помещенную в корпус (рабочую камеру), конденсатор (испарительную камеру), питательный насос, подогреватель и воздушный теплообменник [1].

Недостатками известного устройства (теплового двигателя) являются невозможность утилизации низкопотенциальных вторичных тепловых энергоресурсов, тепловых ресурсов природных источников, громоздкость конструкции, невозможность создания возвратно-поступательного движения, что сужает область его применения и снижает эффективность.

Более близким к предлагаемому изобретению является теплотрубный двигатель, содержащий помещенные в одном корпусе испарительную камеру, покрытую изнутри фитилем, торцевая стенка которой изнутри покрыта полосами пористого материала, внутри которой располагается перфорированный сепарационный элемент (щит), конечный участок напорного трубопровода с форсункой, и находящуюся в контакте с горячей средой, отделенную от нее перегородкой адиабатно-изоэнтропную (рабочую) камеру, заполненную фитилем, в которой помещен корпус с размещенной в нем силовой турбиной, насаженной на вал, проходящий по оси поперечного сечения корпуса двигателя, цилиндрический резервуар с перфорированными стенками, питательный насос, ротор которого также насажен на вал, размещенный вместе с начальным участком напорного трубопровода снаружи корпуса двигателя, конденсационную камеру, также изнутри покрытую фитилем, являющимся продолжением фитиля испарительной камеры, и находящуюся в контакте с холодной средой [2].

Основными недостатками известного теплотрубного двигателя являются сложность конструкции, обусловленная размещением питательного насоса и начального участка напорного трубопровода снаружи корпуса, невозможность создания вращательного момента рабочему органу на продольной оси корпуса двигателя и низкая скорость конденсации пара рабочей жидкости в конденсационной камере, обусловленная образованием пленки конденсата на внутренней поверхности нижней торцевой стенки, создающей дополнительное термическое сопротивление, что снижает его надежность и эффективность.

Техническим результатом, на решение которого направлено предлагаемое изобретение, является повышение надежности и эффективности теплотрубного двигателя.

Технический результат достигается тем, что теплотрубный осевой двигатель (ТТОД) включает в себя помещенные в одном корпусе испарительную камеру, покрытую изнутри фитилем, верхняя торцевая стенка которой покрыта полосами пористого материала, внутри которой располагается перфорированный сепарационный щит, конечный участок напорного трубопровода с форсункой и находящуюся в контакте с горячей средой, отделенную от нее перегородкой рабочую камеру, заполненную фитилем, в которой помещен корпус с размещенной в нем силовой турбиной, рабочее колесо которой и ротор питательного насоса насажены на вал, цилиндрический резервуар, сообщающийся через перфорированные стенки с фитилем, конденсационную камеру, также изнутри покрытую фитилем, являющимся продолжением фитиля рабочей камеры, и находящуюся в контакте с холодной средой, причем внутри испарительной камеры помещен весь напорный трубопровод, внутри рабочей камеры по продольной оси корпуса двигателя сверху вниз на валу поочередно помещены питательный насос, соединенный с напорным трубопроводом, корпус которого находится в цилиндрическом резервуаре, днище которого примыкает к верхней стенке корпуса силовой турбины, а внутри конденсационной камеры по ее продольной оси и центру нижней торцевой стенки проходит вал, снабженный пропеллером и соединенный снаружи с рабочим органом.

В основе работы предлагаемого ТТОД лежит основной цикл паросиловой установки - цикл Ренкина, согласно которому положительная работа расширения пара в турбине значительно превышает отрицательную работу насоса по сжатию конденсата [3, с.117], и высокая эффективность передачи теплоты в тепловых трубах, обусловленная высокими значениями коэффициента теплопередачи в процессах испарения и конденсации [4, с.146], которые делятся на три участка: зона испарения (подвода теплоты), адиабатная зона (переноса теплоты) и зона конденсации (отвода теплоты), покрытых изнутри фитилем и частично заполненных рабочей жидкостью - переносчиком теплоты, в качестве которой используются вода, спирты, хладоны, жидкие металлы т.д. [5, с.106].

На фиг.1 представлен общий вид, на фиг.2, 3 - поперечные разрезы предлагаемого ТТОД.

Теплотрубный осевой двигатель состоит из корпуса 1, покрытого изнутри фитилем 2, с верхней 3 и нижней 4 торцевыми стенками, внутри которого по ходу движения пара расположены: испарительная камера 5, внутренняя поверхность торцевой стенки 3 которой покрыта полосами пористого материала 6, соединенными с фитилем 2, в которой расположены напорный трубопровод 7 с форсункой 8 и перфорированный сепарационный щит 9; отделенная от испарительной камеры 5 перегородкой 10 рабочая камера 11, внутри которой по центру сверху вниз на валу 12 помещены питательный насос 13, соединенный с напорным трубопроводом 7, корпус которого находится в цилиндрическом резервуаре 14, бортовые перфорированные стенки которого соприкасаются с фитилем 2, колесо силовой турбины 15, помещенной в корпус 16, соединенный с испарительной камерой 5 паровым соплом 17, прикрытым сепарационным щитом 9, а патрубком мятого пара 18 с конденсационной камерой 19, по продольной оси которой и центру нижней торцевой стенки проходит вал 12, снабженный пропеллером 20 и соединенный снаружи с рабочим органом (не показан).

Предлагаемый ТТОД работает следующим образом.

Предварительно, перед началом работы из камер 5, 11 и 19 ТТОД удаляют воздух и закачивают рабочую жидкость, которую выбирают в зависимости от температурного потенциала холодной и горячей сред (штуцера для удаления воздуха и подачи рабочей жидкости на фиг.1, 2, 3 не показаны) в количестве, достаточном для заполнения объема пор фитиля 2, напорного трубопровода 7 и цилиндрического резервуара рабочей жидкости 14, после чего корпус 1 ТТОД устанавливают вертикально таким образом, чтобы испарительная камера 5 контактировала с горячей средой, конденсационная камера 19 - с холодной. В результате нагрева торца 3 происходит испарение рабочей жидкости в канавках между полосами пористого материала 6, который предотвращает образование паровой пленки на внутренней поверхности торца и, таким образом, интенсифицирует процесс испарения [6, с.22], образуется пар, создается давление в испарительной камере 5, полученный пар, проходя через перфорированный сепарационный щит 9, освобождается от уносимых капель рабочей жидкости, которые отбрасываются на поверхность фитиля 2 и транспортируются им обратно в зону испарения, через паровое сопло 17 поступает на лопатки колеса силовой турбины 15, вращая его совместно с валом 12, который сообщает вращательное движение ротору питательного насоса 13, пропеллеру 20 и вращающий момент М на рабочем конце вала 12, в результате чего в корпусе турбины 16 происходит изоэнтропное теплопадение пара с одновременным снижение его температуры и давления [3, с.331], после чего отработавший пар через патрубок мятого пара 18 попадает в конденсационную камеру 19, где давление пара уменьшается еще в результате его дальнейшего расширения и он конденсируется за счет контакта наружной поверхности нижней торцевой стенки 4 с холодной средой. При этом за счет вращения пропеллера 20, закручивающего и направляющего поток пара на внутреннюю поверхность нижней торцевой стенки 4, во вращающемся потоке пара возникает центробежная сила, которая срывает образовавшийся конденсат с внутренней поверхности торцевой стенки 4, препятствуя образованию там жидкостной пленки, и отбрасывает его на фитиль 2, в результате чего происходит резкое увеличение скорости теплопередачи между паром и холодной средой и, соответственно, многократное увеличение скорости конденсации. Образовавшийся конденсат всасывается фитилем 2, откуда под воздействием капиллярных сил и разрежения, создаваемого насосом 13, адиабатно [5, с.106] транспортируется в цилиндрический резервуар рабочей жидкости 14, откуда насосом 13 через напорный трубопровод 7 и форсунку 9 под давлением, величина которого определяется рабочим давлением пара в испарительной камере 5, рабочая жидкость разбрызгивается по внутренней поверхности торцевой стенки 3, испаряется с поверхности канавок 6 и в соответствии с вышеописанным процессом цикл повторяется.

Таким образом, предлагаемый ТТОД обеспечивает надежное и эффективное получение механической энергии за счет утилизации вторичных тепловых энергоресурсов различного потенциала (энергии сбросных вод, отходящих газов и т.д.), тепловых ресурсов природных источников (энергии солнца, воды и т.д.) в форме вращательного движения.

ЛИТЕРАТУРА

1. А.с. №769038, Мкл. F01K 17/06, 1980.

2. Патент РФ №2287709, Мкл. F01K 25/00, 2006.

3. И.Н.Сушкин. Теплотехника. - М.: Металлургия, 1973, 480 с.

4. А.Н.Плановский, П.И.Николаев. Процессы и аппараты химической и нефтехимической технологии. - М.: Химия, 1987, 496 с.

5. В.В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. Минск, Высш. школа, 1988, 170 с.

6. Тепловые трубы и теплообменники: от науки к практике. Сб. научн. тр. М., 1990, 157 с.

Теплотрубный осевой двигатель, включающий в себя помещенные в одном корпусе испарительную камеру, покрытую изнутри фитилем, верхняя торцевая стенка которой покрыта полосами пористого материала, внутри которой располагается перфорированный сепарационный щит, конечный участок напорного трубопровода с форсункой и находящуюся в контакте с горячей средой, отделенную от нее перегородкой рабочую камеру, заполненную фитилем, в которой помещен корпус с размещенной в нем силовой турбиной, рабочее колесо которой и ротор питательного насоса насажены на вал, цилиндрический резервуар, сообщающийся через перфорированные стенки с фитилем, конденсационную камеру, также изнутри покрытую фитилем, являющимся продолжением фитиля рабочей камеры, и находящуюся в контакте с холодной средой, отличающийся тем, что внутри испарительной камеры помещен весь напорный трубопровод, внутри рабочей камеры по продольной оси корпуса двигателя сверху вниз на валу поочередно помещены питательный насос, соединенный с напорным трубопроводом, корпус которого находится в цилиндрическом резервуаре, днище которого помещено на верхней стенке корпуса силовой турбины, и колесо силовой турбины, а внутри конденсационной камеры по ее продольной оси и центру нижней торцевой стенки проходит вал, снабженный пропеллером и соединенный снаружи с рабочим органом.



 

Похожие патенты:

Изобретение относится к области энергетики и может быть использовано для получения электрической и тепловой энергии путем газификации твердого топлива. .

Изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных энергоресурсов. .

Изобретение относится к паросиловым установкам, работающим на легкокипящих рабочих телах по замкнутым циклам с преобразованием тепловой энергии в механическую или электрическую энергию, и может найти применение в области производства электричества.

Изобретение относится к энергетике, а конкретно к преобразованию тепловой энергии в механическую работу при помощи паровой машины. .

Изобретение относится к теплоэнергетике. .

Изобретение относится к теплоэнергетике. .

Изобретение относится к теплоэнергетике. .

Изобретение относится к машиностроению, в частности к двигателям, работающим при расширении и сжатии массы рабочего тела, и может быть использовано в двигателях с внешним подводом тепла.

Изобретение относится к теплоэнергетике. .

Изобретение относится к химической промышленности. Устройство содержит сушилку (1) с псевдоожиженным слоем, отапливаемый высушенным бурым углем паровой котел, паровую турбину. Бурый уголь подвергают косвенной сушке в сушилке (1). Высушенный уголь охлаждают, измельчают и подают в паровой котел. Топочный газ из парового котла подвергают абсорбционной очистке для отделения CO2. Устройство для очистки топочного газа включает абсорбционную колонну (14), десорбционную колонну (12), рибойлер (13). Необходимую для абсорбционной очистки энергию частично отбирают из сушилки (1). Изобретение позволяет снизить количество необходимого для очистки топочного газа пара низкого давления. 2 н. и 8 з.п. ф-лы, 1 ил.

Паровая турбина содержит первый кожух, содержащий первую турбину, функционально присоединенную к вращающемуся валу и выполненную с возможностью работы при первой температуре. Концевое уплотнение предназначено для частичного уплотнения первого кожуха с вращающимся валом. Регулятор проходящего через уплотнение пара предназначен для приема потока пара из концевого уплотнения. Второй кожух содержит вторую турбину, функционально присоединенную к вращающемуся валу и выполненную с возможностью работы при второй температуре, которая меньше первой температуры. Эжектор предназначен для создания смеси из по меньшей мере части потока пара, получаемого из указанного регулятора, и пара, отводимого из расположенной выше по потоку камеры заданной ступени второй турбины, и для введения указанной смеси во вторую турбину. Позволяет полезно использовать пар утечек из уплотнений высокотемпературной части турбины, обладающий повышенной для низкотемпературной части турбины температурой и пониженным давлением, для работы в низкотемпературной части турбины. 9 з.п. ф-лы, 10 ил.

Изобретение относится к энергетике. Способ рекуперации тепла отработанного пара, при котором осуществляют подачу отработанного пара на конденсатор-рекуператор для конденсации отработанного пара и рекуперации тепла отработанного пара, причём конденсатор-рекуператор включает корпус с магистралью подачи отработанного пара и магистралью отвода нагретого конденсата. В корпусе конденсатора-рекуператора установлен механизм, с которым соединены капсулы с возможностью перемещения относительно температурных зон конденсатора-рекуператора с помощью механизма. В зоне сбора конденсата установлен узел открытия клапана капсулы для заполнения конденсатом, в зоне подачи отработанного пара установлены узел подключения для соединения капсулы с нагретым конденсатом с магистралью и узел открытия капсулы для отвода конденсата из капсулы. Также представлен конденсатор-рекуператор для осуществления способа. Изобретение позволяет повысить КПД рекуперации тепла отработанного пара. 2 н. и 16 з.п. ф-лы, 5 ил.

Изобретение относится к теплоэнергетике, а именно к тепловым двигателям
Наверх