Солнечный модуль со стационарным концентратором

Изобретение относится к области гелиотехники и касается создания солнечных модулей с фотоэлектрическими или тепловыми приемниками излучения и стационарными концентраторами, допускающими эксплуатацию модуля в неподвижном режиме круглый год. Солнечный модуль со стационарным концентратором имеет боковые отражающие круглоцилиндрические стенки радиусом R, расположенные по обе стороны от плоскости симметрии модуля, ограничивающие плоскость входа излучения в концентратор, плоскость симметрии которого проходит через центр плоскости приемника излучения с двусторонней рабочей поверхностью шириной d и параллельной плоскости входа, и вторичные круглоцилидрические отражатели радиусом r=0,5d. В поперечном сечении концентратора боковые отражающие стенки выполнены по окружностям радиусом R, центры которых расположены на плоскости входа, один конец окружности радиусом R проходят через крайние точки плоскости приемника излучения шириной 2d, в которых соединяются окружности боковых стенок и вторичных отражателей, и через которые проходят линии параметрических углов, составляющих с осью симметрии угол γ, точки пересечения которых с плоскостью входа являются вторым концом окружностей радиусом R, при этом центральный угол дуги радиуса R составляет величину не более 30 угловых градусов, и центры вторичных круглоцилидрических отражателей расположены по краям приемника излучения. Изобретение позволяет увеличить концентрацию излучения при больших параметрических углах. 1 ил.

 

Изобретение относится к области гелиотехники и касается создания солнечных модулей с фотоэлектрическими или тепловыми приемниками излучения и стационарными концентраторами, допускающими эксплуатировать модули в неподвижном режиме круглый год.

Известен солнечный модуль (аналог) с концентратором (патент РФ №2191329, опубл. 20.10.2002 Бюл. №29), в котором боковая стенка концентратора выполнена из отражающего кругового цилиндра, сопрягающегося со вторичным круглоцилиндрическим отражателем, установленным под приемником излучения с двусторонней рабочей поверхностью.

Основными недостатками указанного модуля с концентратором являются то, что модуль необходимо ориентировать на солнце, что усложняет конструкцию солнечной установки, удорожает ее и увеличивает эксплуатационные расходы.

Наиболее близким по технической сущности к предлагаемому изобретению является солнечный модуль, имеющий боковые отражающие круглоцилиндрические стенки радиусом R, расположенные по обе стороны от плоскости симметрии модуля, ограничивающие плоскость входа излучения в концентратор, плоскость симметрии модуля проходит через центр плоскости приемника излучения с двусторонней рабочей поверхностью шириной d и параллельной плоскости входа, и вторичные круглоцилидрические отражатели радиусом г=0,5d (Д.С.Стребков, Э.В.Тверьянович «Концентраторы солнечного излучения», М., ОНО «Типография Россельхозакадемии», 2007, с.197-198).

Известное техническое решение по сравнению с известным аналогом имеет более высокую концентрацию, симметричный рабочий профиль концентратора, в пределах ограниченного параметрического угла (±27,5°) такой модуль может работать в стационарном режиме, для чего требуется расположение его в пространстве следующим образом: плоскость входа должна быть обращена к Югу и расположена под углом широты местности к горизонту, а продольная ось концентратора должна быть ориентирована Запад-Восток.

Недостатки прототипа следующие:

- геометрия концентратора, определяемая углами α и β, расположением центров радиусов образующих окружностей предполагает работу модуля в стационарном режиме в пределах небольших параметрических углов β (±27,5°), что предполагает использование модуля только при горизонтальном расположении продольной (ось модуля ориентирована Запад-Восток), при этом необходима принудительная циркуляция охлаждающей жидкости через приемник излучения, что требует насосного оборудования и дополнительной трубопроводной арматуры, т.к. естественная конвекция при этом не будет работать;

- расположение продольной оси модуля по экваториальной схеме (продольная оси расположена под углом широты местности к горизонтальной плоскости) позволит работать модулю в неподвижном режиме только в пределах 55° (2×27,5), что означает 3 ч 40 мин в течении световых суток, что мало и не приемлемо.

Задачей предлагаемого изобретения является увеличение концентрации при параметрическом угле ±60° и установка модуля по экваториальной схеме с длительной работой в стационарном режиме.

В результате использования предлагаемого изобретения появляется возможность увелечить среднесуточную выработку энергии при возможности естественной конвекционной циркуляции охлаждающей жидкости.

Вышеуказанный технический результат достигается тем, что в предлагаемом солнечном модуле со стационарным концентратором, имеющем боковые отражающие круглоцилиндрические стенки радиусом R, расположенные по обе стороны от плоскости симметрии модуля, ограничивающие плоскость входа излучения в концентратор, плоскость симметрии проходит через центр плоскости приемника излучения с двусторонней рабочей поверхностью шириной d и параллельной плоскости входа, и вторичные круглоцилидрические отражатели радиусом r=0,5d, согласно изобретению в поперечном сечении концентратора боковые отражающие стенки выполнены по окружностям радиусом R, центры которых расположены на плоскости входа, один конец окружности радиусом R проходят через крайние точки плоскости приемника излучения шириной 2d, в которых соединяются окружности боковых стенок и вторичных отражателей, и через которые проходят линии параметрических углов, составляющих с осью симметрии угол γ, точки пересечения которых с плоскостью входа являются вторым концом окружностей радиусом R, при этом центральный угол дуги радиуса R составляет величину не более 30 угловых градусов, и центры вторичных круглоцилидрических отражателей расположены по краям приемника излучения.

Центры боковых отражателей, имеющих образующие в виде окружностей радиусом R, расположены на плоскости входа излучения по разные стороны от плоскости симметрии, при этом центральный угол раскрытия каждой боковой стенки имеет угол β≤30°.

Центры радиусов вторичных отражателей находятся по краям приемника излучения.

Образующие боковых стенок и вторичных отражателей не являются сопряженными поверхностями, окружности вторичных отражателей имеют конечные точки на плоскости приемника излучения.

Линии параметрических углов, определяющие угол зрения концентратора, проведены от крайних точек плоскости входа через плоскость симметрии до крайних точек плоскости приемника излучения.

Все это позволяет увеличить параметрический угол до ±60° и сделать время работы модуля до 8 часов в сутки при экваториальной схеме ориентации.

На чертеже показано поперечное сечение солнечного модуля со стационарным концентратором и схема прохождения лучей.

Солнечный модуль со стационарным концентратором имеет боковые отражающие круглоцилиндрические стенки 1, 2 радиусом R, расположенные по обе стороны от плоскости 3 симметрии модуля, ограничивающие плоскость входа 4 излучения в концентратор, плоскость симметрии 3 проходит через центр плоскости 5 приемника 6 излучения с двусторонней рабочей поверхностью шириной d и параллельной плоскости входа 4, и вторичные круглоцилидрические отражатели 7, 8 радиусом r=0,5d. В поперечном сечении концентратора боковые отражающие стенки 1, 2 выполнены по окружностям радиусом R, центры 0 которых расположены на плоскости входа 4, один конец А окружности радиусом R проходит через крайние точки плоскости 6 приемника излучения шириной 2d, в которых соединяются окружности боковых стенок 1, 2 и вторичных отражателей 7, 8, и через которые проходят одна из сторон 9, 10 параметрических углов, составляющих с осью симметрии угол γ, точки пересечения которых с плоскостью входа являются вторым концом Б окружностей радиусом R, при этом центральный угол β дуги радиуса R составляет величину не более 30 угловых градусов, и центры вторичных круглоцилидрических отражателей расположены по краям приемника излучения 6.

Кроме того, на чертеже изображены лучи Л1 и Л2, наклоненные к плоскости симметрии под максимальный параметрический угол γ=60°, и схема их прохождения внутри концентратора, и луч Л3, наклоненный под меньшим углом, в точках падения лучей построены нормали к отражающим поверхностям.

Работает модуль следующим образом.

Солнечное излучение, например луч Л1, приходит под максимальным параметрическим углом γ=60° к плоскости симметрии 3, отражается от боковой стенки 2 в точке 6 и приходит в точку А′ (по построению) на границе соединения окружностей боковой стенки 1 со вторичным отражателем 7. Луч Л1 отражается несколько раз от стенок вторичного отражателя 7 и попадает на приемник излучения 6 благодаря тому, что радиусы вторичных отражателей исходят из крайней точки 02 приемника излучения 6.

Луч Л2, приходящий под углом 60° в середину стенки 2, отражается и приходит в точку А′ по причине того, стенка 2 имеет малый угол раскрытия β≤30°, при таком угле раскрытия круговой отражатель ведет себя как параболический, отражая лучи в общий фокус. Далее от стенок вторичного отражателя 7 лучи после нескольких отражений попадут на приемник излучения 6.

Луч Л3 приходит под углом меньшим, чем параметрический угол, отражается от боковой стенки 2, отражается от вторичного отражателя 8 и попадает на приемник излучения 6.

Можно показать, что геометрия предлагаемого концентратора описывается следующими формулами:

Подстановка значений в формулы 1-4 при заданных d=1, β=20°, γ=60° показывают следующие значения параметров концентратора: радиус боковой стенки R=4d, концентрация излучения К=2,5, высота модуля h=1,4d, стрелка прогиба Δr=0,24d.

Для прототипа при параметрическом угле γ=60° концентрация составит К=2,16.

Если задать другие значения при d=1, например, β=20°, а параметрический угол, γ=30°, то получим следующие значения: R=14,3d, К=3,7, h=4,9d, Δr=0,86.

Преимущества предлагаемого модуля состоят в том, он имеет более высокую концентрацию излучения при больших (±60°) параметрических углах, он может устанавливаться по экваториальной схеме, когда продольная ось модуля установлена под углом широты местности, при этом в приемнике излучения охлаждающая жидкость будет циркулировать по законам свободной конвекции, поднимаясь вверх под действием нагрева без дополнительных насосов, что значительно снизит стоимость солнечной установки, уменьшит эксплуатационные расходы. При этом время работы модуля составит 120°/15 град./ч=8 ч, при концентрации излучения 2,5.

Модули подобного типа представляют интерес для солнечных станций с фотоэлектрическими преобразователями для выработки электричества, тепло охлаждающей жидкости может полезно использоваться для промышленных и бытовых целей.

Такие модули могут использоваться в солнечных холодильных установках, в которых необходимо иметь температуру теплоносителя за 100°С.

Модули подобного типа при параметрических углах порядка 30° должны устанавливаться продольной осью горизонтально, при этом целесообразно иметь параметрический угол 30°, а не 27,5°, как в прототипе, т.к. при монтаже модулей в месте эксплуатации необходимо иметь допуск на точность установки, что обеспечивается значением угла в 30°-27,5°=2,5°.

Солнечный модуль со стационарным концентратором, имеющий боковые отражающие круглоцилиндрические стенки радиусом R, расположенные по обе стороны от плоскости симметрии модуля, ограничивающие плоскость входа излучения в концентратор, плоскость симметрии проходит через центр плоскости приемника излучения с двусторонней рабочей поверхностью шириной d и параллельной плоскости входа, и вторичные круглоцилидрические отражатели радиусом r=0,5d, отличающийся тем, что в поперечном сечении концентратора боковые отражающие стенки выполнены по окружностям радиусом R, центры которых расположены на плоскости входа, один конец окружности радиусом R проходит через крайние точки плоскости приемника излучения шириной 2d, в которых соединяются окружности боковых стенок и вторичных отражателей, и через которые проходят линии параметрических углов, составляющих с осью симметрии угол γ, точки пересечения которых с плоскостью входа являются вторым концом окружностей радиусом R, при этом центральный угол дуги радиуса R составляет величину не более 30 угловых градусов, и центры вторичных круглоцилидрических отражателей расположены по краям приемника излучения.



 

Похожие патенты:

Изобретение относится к гелиотехнике, в частности к солнечным концентраторам с высокой степенью концентрации. .

Изобретение относится к гелиоархитектуре и гелиоэнергетике, в частности к солнечным зданиям со встроенными солнечными энергетическими установками для получения электрической энергии и теплоты.

Изобретение относится к области гелиотехники, в частности касается создания солнечных установок с концентраторами солнечного излучения для выработки электричества и тепла.

Изобретение относится к солнечной энергетике и может найти применение при производстве малогабаритных гелиоустановок индивидуального или промышленного пользования для преобразования солнечной энергии в тепловую или электрическую энергию.

Изобретение относится к области гелиотехники, в частности касается создания солнечных установок с концентраторами солнечного излучения для выработки электричества и тепла.

Изобретение относится к гелиоархитектуре и гелиоэнергетике, в частности к солнечным зданиям со встроенными солнечными энергетическими установками для получения электрической энергии и теплоты.

Изобретение относится к солнечной энергетике, в частности к солнечным энергетическим установкам с концентраторами солнечного излучения для выработки электроэнергии и высокопотенциального тепла.

Изобретение относится к солнечной энергетике и может найти свое применение в широком диапазоне использования в зависимости от рабочей площади концентратора, а именно: от получения горячей воды для бытовых нужд до получения высокопотенциальной энергии перегретого пара.

Изобретение относится к области гелиотехники. .

Изобретение относится к гелиотехнике и может быть использовано для обеспечения энергией домостроений жилых и производственных зданий

Изобретение относится к солнечной энергетике и может найти свое применение в широком диапазоне использования при преобразовании солнечной энергии в тепловую энергию пара или горячей воды, необходимых для бытовых нужд, систем отопления жилых домов и производственных помещений

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям с концентраторами для получения электричества и/или тепла

Изобретение относится к гелиоэнергетике, к солнечным энергетическим модулям с концентратором, для получения электрической энергии

Изобретение относится к гелиотехнике. Теплофотоэлектрический модуль с параболоцилиндрическим концентратором солнечного излучения состоит из параболоцилиндрического концентратора и линейчатого фотоэлектрического приемника (ФЭП), расположенного в фокальной области с равномерным распределением концентрированного излучения вдоль цилиндрической оси, при этом солнечный фотоэлектрический модуль содержит асимметричный концентратор параболоцилиндрического типа с зеркальной внутренней поверхностью отражения и линейчатый фотоэлектрический приемник, установленный в фокальной области с устройством протока теплоносителя; форма отражающей поверхности концентратора Х(Y) определяется предложенной системой уравнений, соответствующей условию равномерной освещенности поверхности фотоэлектрического приемника, выполненного в виде линейки шириной do из скоммутированных ФЭП и длиной h и расположенного под углом к миделю концентратора. Изобретение обеспечивает работу солнечного фотоэлектрического модуля при высоких концентрациях и равномерное освещение ФЭП, получение на одном ФЭП технически приемлемого напряжения (12 В и выше), нагрев проточного теплоносителя, повышение КПД преобразования и снижение стоимости вырабатываемой энергии. 4 ил.

Изобретение относится к энергетике, в частности к использованию энергии солнечного излучения в системах теплоснабжения таких объектов, как индивидуальное жилье, мелкие сельскохозяйственные производства, промыслы, отдаленные оздоровительные учреждения или объекты экологического назначения и туризма. Данный солнечный нагреватель имеет коллектор в прозрачной теплоизолирующей оболочке с параболическим рефлектором, оснащенным устройством самоориентации на Солнце. Отличительные особенности данного устройства заключаются в том, что его коллектор выполнен в виде коаксиальной трубной конструкции с длиной ее абсорбера, превышающей продольный размер параболического рефлектора, что позволяет ограничиться его ориентацией в одной плоскости, а его привод обеспечивает наряду с автоматическим поддержанием ориентации на Солнце в рабочем режиме также автоматический поворот параболического рефлектора на время отсутствия солнечного облучения в верхнее положение. Изобретение обеспечивает защиту всех рабочих поверхностей нагревателя от атмосферных осадков. 3 ил.

Солнечный модуль содержит на рабочей поверхности защитное покрытие, полупараболоцилиндрический зеркальный отражатель с параметрическим углом δ с поверхностью входа и выхода лучей и приемник излучения в виде полосы. Защитное покрытие выполнено в виде отклоняющей оптической системы из набора призм с острым углом Ψ между поверхностями входа и выхода лучей. Фотоприемник установлен в фокальной плоскости между фокальной осью и вершиной полупараболоцилиндрического зеркального отражателя. Поверхность входа лучей отклоняющей оптической системы параллельна поверхности входа лучей полупараболоцилиндрического зеркального отражателя или наклонена к ней под углом Ψ. Угол входа лучей β0 или угол между направлением входа лучей и поверхностью входа зеркального отражателя β 0 / , а также острый угол Ψ и коэффициент преломления n материала отклоняющей оптической системы связаны с параметрическим углом δ отражателя соответствующими соотношениями, приведенными в формуле изобретения. Технический результат - повышение эффективности использования солнечной энергии и снижение стоимости получения электроэнергии и теплоты. 2 н. и 2 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к гелиотехнике, в частности к солнечным тепловым коллекторам, используемым в теплоснабжении зданий и сооружений. В солнечном тепловом коллекторе может нагреваться как жидкий теплоноситель, подаваемый потребителю, так и воздух, направляемый в отапливаемые помещения. Жидкий теплоноситель поступает по распределительной трубе 7 в поглощающие трубы 3, а затем в жидкостные линзы 12 гофрированной панели 10 с параболическими отражателями 11, концентрирующими излучение как на жидкостных линзах 12, так и в зоны поглощающих труб 3 и пластин 2, размещенных на стеновой панели 1. После жидкостных линз теплоноситель подается в поглощающие трубы 3, расположенные на стеновой панели 1, где в результате направленной концентрации излучения интенсивно нагревается, а затем по сборной трубе 8 отводится к потребителю. В холодный период года, когда интенсивности излучения не достаточно для подогрева жидкого теплоносителя до требуемых параметров, в устройстве нагревается воздух, в последствии подаваемый в отапливаемые помещения. Повышение температуры воздуха происходит при обтекании облучаемых и соответственно нагретых поверхностей стеновой панели и насыпного аккумулирующего материала. Изобретение должно повысить эффективность утилизации солнечной энергии посредством рационального совмещения пассивного и активного способов преобразования излучения. 2 ил.

Изобретение относится к области генерации солнечной тепловой энергии, а более конкретно к устройству/системе генерации тепловой мощности, содержащему солнечные термоколлекторы желобкового типа, заполненные водой, а также к способу генерации мощности, использующему подобное устройство/систему. Солнечная энергетическая трубка с автоматической выдержкой и сбором тепла содержит стеклянную трубку (1b2) и поглотительную трубку (1b3), покрытую теплопоглощающим слоем, нанесенным на нее, между стеклянной трубкой (1b2) и поглотительной трубкой (1b3) существует вакуум. Отражательная пластина (1b4) способна обеспечить текучей среде в поглотительной трубке (1b3) поочередно поток вверх и вниз во внутренней камере поглотительной трубки (1b3), разделительная пластина (1b4) представляет собой спиральную форму и фиксируется в поглотительной трубке (1b3). Также раскрыта система генерации тепловой мощности и технология, использующая дополнительный свет и генерацию тепловой мощности при воздействии погодных условий и поддерживающая устойчивую генерацию мощности в ночное время или когда нет достаточного солнечного света. 4 н. и 8 з.п. ф-лы, 7 ил.
Наверх