Лазерное устройство для измерения нестабильности пространственного положения объектов и определения отклонения их формы от прямолинейности



Лазерное устройство для измерения нестабильности пространственного положения объектов и определения отклонения их формы от прямолинейности
Лазерное устройство для измерения нестабильности пространственного положения объектов и определения отклонения их формы от прямолинейности
G01C1 - Измерение расстояний, горизонтов или азимутов; топография, навигация; гироскопические приборы; фотограмметрия (измерение размеров или углов предметов G01B; измерение уровня жидкости G01F; измерение напряженности или направления магнитных полей вообще, кроме магнитного поля Земли, G01R; радионавигация, определение расстояния или скорости, основанное на эффекте распространения радиоволн, например эффекта Доплера, на измерении времени распространения радиоволн; аналогичные системы с использованием другого излучения G01S; оптические системы для этих целей G02B; карты, глобусы G09B)

Владельцы патента RU 2366894:

Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет геодезии и картографии (МИИГАиК) (RU)

Изобретение относится к измерительной технике и может быть использовано для получения мониторинговых и конкретных данных о пространственном положении различных объектов природного и искусственного происхождения, а также отклонений их поверхностей от прямолинейности. Техническим результатом изобретения является упрощение конструкции устройства и повышение точности измерений. Устройство для измерения нестабильности пространственного положения объектов и определения отклонений их формы от прямолинейности содержит лазер, оптический формирователь лазерного пучка, создающий референтное направление, отражающий и принимающий лазерное излучение оптический элемент, координатно-чувствительный приемник и блок обработки информации; в качестве отражающего и принимающего лазерное излучение оптического элемента используется кассета с пластмассовой пленкой, расположенной в ней по диагонали толщиной от 0,05 до 0,125 мм, необходимое равномерное натяжение которой осуществляется с помощью валиков с цанговыми зажимами, при этом один конец пленки укреплен на одном из валиков жестко, а другой подвижно по осевому вращению с возможностью жесткой фиксации. 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для получения мониторинговых и конкретных данных о пространственном положении различных объектов природного и искусственного происхождения, а также отклонений их поверхностей от прямолинейности.

Известно устройство для контроля отклонений положений объектов от лазерного пучка, создающее заданное опорное направление на трассе, и фотоэлектрического датчика, закрепляемого на объекте в измеряемых точках [1].

Недостатком данного устройства является отсутствие возможности одновременных измерений пространственного положения нескольких объектов, т.к. во время измерений референтный лазерный пучок перекрывается фотоэлектрическим датчиком.

Наиболее близким по технической сущности и достигаемому результату является фотоэлектрическое устройство для бесконтактного измерения объектов, содержащее: лазер, оптический формирователь лазерного пучка, например, в виде телескопической системы, фотоэлектрического датчика и плоскопараллельных стеклянных пластинок, расположенных под углом 45° к референтному лазерному пучку на определенных расстояниях между собой и закрепленных совместно с фотоэлектрическим датчиком на измеряемых объектах [2].

Недостатком известного устройства является то, что при прохождении референтного лазерного пучка через плоскопараллельные стеклянные пластинки на каждой из них происходит два отражения от границы воздух - стекло - воздух, при коэффициенте отражения на каждой границе 6% (френелевское отражение), что вызывает двоение референтного лазерного пучка в одной плоскости на фотоэлектрическом датчике, что может привести к появлению дополнительных погрешностей или усложнению конструкции фотоэлектрического датчика с целью выделения одного из двух направлений референтного лазерного пучка.

Для повышения качества плоскостей плоскопараллельные стеклянные пластинки необходимо выбирать из пластинок большой толщины, составляющей не менее 0,1 от максимального размера плоскопараллельной стеклянной пластинки, что приводит к удорожанию и усложнению конструкции, т.к. пластины увеличивают общий вес устройства и усложняют его конструкцию. В связи с этим применение устройства в полевых условиях нерационально.

Целью изобретения является упрощение конструкции устройства и повышение точности измерений.

Поставленная цель достигается тем, что вместо отражающего оптического элемента в виде плоскопараллельной стеклянной пластинки в устройстве используется пластмассовая пленка, толщина которой может колебаться в пределах от 0,05 мм до 0,125 мм, натяжение которой осуществляется с помощью двух валиков цилиндрической формы, снабженных цанговыми зажимами.

Первый из указанных пределов определяется исходя из требуемой минимальной толщины серийно выпускаемой пленки с необходимой прочностью.

Второй - исходя из допустимой величины двоения референтного лазерного пучка. Сущность изобретения поясняется чертежом, на котором приведена принципиальная схема лазерного устройства для измерения нестабильности пространственного положения объектов и определения их формы от прямолинейности. На фиг.1 показан вид с боку, на фиг.2 - вид сверху.

На чертеже представлена принципиальная схема устройства, содержащая лазер 1, оптический формирователь лазерного пучка 2, пластмассовую пленку 3 толщиной от 0,05 мм до 0,125 мм, валики цилиндрической формы 4, координатно-чувствительный приемник 5 (выполненный, например, в виде фотодиодной матрицы и блоков обработки измерительной информации 6). Валики 4 установлены в цанговые зажимы 7, состоящие из раздельных втулок и регулируемых хомутов. На выходе, после полупрозрачной пластмассовой пленки 3, показаны - лазерный референтный пучок 8 и опорное направление 9. Пластмассовая пленка 3 и валики 4 объединены в кассету 10.

Устройство работает следующим образом. Лазер 1 и оптический формирователь лазерного пучка 2 образуют лазерный референтный пучок 8 и опорное направление 9. После оптического формирователя лазерного пучка 2 установлена кассета 10 с пластмассовой пленкой 3, жестко закрепленной на валиках 4, например путем приклеивания, и расположенных в кассете 10 по диагонали, создавая рабочую поверхность для пропускания и отражения референтного лазерного пучка 8. Прокручиванием одного из валиков 4 создают равномерное натяжение пленки 3, которое фиксируется с помощью цанговых механизмов 7, при этом один из валиков 4 предварительно фиксируют такими же цанговыми механизмами 7.

После включения лазера 1 референтный лазерный пучок 8 проходит через рабочий участок пленки 3 и, одновременно отражаясь от нее, попадает на координатно-чувствительный фотоприемник 5, подключенный к блоку обработки измерительной информации 6.

Источники информации

1. Авторское свидетельство СССР №785644, М.Кл. G01B 11/02, 26.07.1978 г.

2. Авторское свидетельство СССР №781567, М.Кл. G01C 1/00, 18.12.1987 г. (прототип).

Устройство для измерения нестабильности пространственного положения объектов и определения отклонений их формы от прямолинейности, содержащее лазер, оптический формирователь лазерного пучка, создающий референтное направление, отражающий и принимающий лазерное излучение оптический элемент, координатно-чувствительный приемник и блок обработки информации, отличающееся тем, что в качестве отражающего и принимающего лазерное излучение оптического элемента использована кассета с пластмассовой пленкой, расположенной в ней по диагонали толщиной от 0,05 до 0,125 мм, необходимое равномерное натяжение которой осуществляется с помощью валиков с цанговыми зажимами, при этом один конец пленки укреплен на одном из валиков жестко, а другой подвижно по осевому вращению с возможностью жесткой фиксации.



 

Похожие патенты:

Изобретение относится к области магнитоизмерительной техники, в частности к магнитной навигации, магниторазведке, магнитному картографированию и т.д., для измерения и компенсации магнитных помех носителей или устранения магнитной девиации магнитных навигационных компасов.

Изобретение относится к области измерительной техники, а именно устройствам для измерения угловой скорости, выполненным на кольцевых лазерах. .

Изобретение относится к измерительной технике, в частности к вибрационным гироскопическим приборам, предназначенным для измерения угловой скорости. .

Изобретение относится к области навигационного приборостроения и может быть использовано для уничтожения электромагнитной девиации в магнитных стрелочных и индукционных компасах.

Изобретение относится к техническим средствам для обследования рельефа дна акваторий и обнаружения подводных препятствий, а именно к жестким тралам. .

Изобретение относится к регулированию физической переменной в динамической системе с приведением этой переменной к одному заданному значению или к значениям, изменяющимся по заданному закону.

Изобретение относится к поворотно-чувствительным устройствам гироскопов и может быть использовано для измерения углов в системах навигации и управления. .

Изобретение относится к области физики и может быть использовано при исследовании поведения свободных электронов (электронов проводимости) в металлах, движущихся ускоренно, в частности, под действием центростремительного ускорения.

Изобретение относится к области фотограмметрии и может быть использовано для топографической съемки местности путем сравнения двух и более изображений одного и того же участка.

Изобретение относится к области измерительной техники, к измерительным устройствам, характеризующимся оптическими средствами измерений, и может быть использовано для решения широкого круга технических задач, таких как сборка крупногабаритных конструкций, слежение за положением объекта, наведение на объект и ряде других.

Изобретение относится к области измерительной техники и может быть использовано для визуализации, математического моделирования и физического воспроизведения геометрии трехмерных объектов, а также их распознавания.

Изобретение относится к технике проведения измерений и определения отклонений от плоскостности плоских поверхностей различной площади и протяженности, в частности поверочных, монтажных и разметочных плит, изготовленных из чугуна или камня.

Изобретение относится к неразрушающему контролю и может быть использовано для бесконтактного контроля профиля изделий сложной формы, например лопаток турбин и т.п.

Изобретение относится к области контрольно-измерительной техники, а более конкретно к способам измерения длины движущегося горячего проката. .

Изобретение относится к неразрушающему контролю и может быть использовано для бесконтактного контроля профиля изделий сложной формы, например лопаток газотурбинных двигателей и т.п.

Изобретение относится к области технической физики и может быть использовано при контроле параметров профилей сооружений метро, железнодорожных туннелей, трубопроводов, горных выработок и иных объектов.

Изобретение относится к контрольно-измерительной технике и может быть использовано в промышленном и химическом производствах, в материаловедении, космических исследованиях, криминалистике, в частности, при определении упругих характеристик нановолокон, калибровке растровых электронных и сканирующих зондовых микроскопов, исследованиях напряженно-деформированных состояний тел, измерениях малых весов, перепадов давлений и температуры, а также для бесконтактного оптического обнаружения областей повышенных градиентов деформации и измерения параметров деформированного состояния поверхностей деталей ответственных конструкций.

Изобретение относится к измерительной технике и может быть использовано, в частности, для оперативного контроля толщины пленок нефтепродуктов в очистных сооружениях, на внутренних водоемах, акваториях портов и т.п.

Изобретение относится к измерительной и навигационной технике, в частности к устройствам для определения угловой ориентации объектов в пространстве. .

Изобретение относится к области измерительной техники оптического приборостроения и может быть использовано в геодезии, машиностроении, приборостроении и в других областях науки и техники, где возникает необходимость создания прецизионного эквидистантного линейного сканирования оптических лазерных пучков
Наверх