Способ определения трассы прокладки элементов заземляющего устройства

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения трассы прокладки элементов заземляющего устройства объектов энергоснабжения, в том числе и тяговых подстанций железнодорожного транспорта. Способ определения трассы прокладки элементов заземляющего устройства включает подключение источника переменного тока к заземляющему устройству, перемещение одного потенциального электрода по поверхности земли перпендикулярно предполагаемой трассе прокладки элемента заземляющего устройства, измерение разности потенциалов между перемещаемым потенциальным электродом и потенциальным электродом, отнесенным в зону «нулевого потенциала», при этом трассу прокладки элементов заземляющего устройства определяют по максимальному значению потенциала поверхности земли над элементом. Изобретение позволяет сохранить возможность и повысить точность определения трассы прокладки элементов заземляющего устройства в случае значительного внешнего магнитного поля (например, в условиях действия тяговой подстанции переменного тока). 2 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения трассы прокладки элементов заземляющего устройства объектов энергоснабжения, в том числе и тяговых подстанций железнодорожного транспорта.

Известен способ определения электрофизических характеристик подземных металлических сооружений, преимущественно сложного контура заземления электрооборудования, при котором на подземное металлическое сооружение накладывают переменный ток и измеряют величину напряженности магнитного поля, созданного наложенным током, в точках пространства над поверхностью земли по трассе металлического сооружения, причем ток накладывают приложением полюсов источника переменного тока к двум точкам контура заземления, удаленных друг от друга на максимальное расстояние в пределах контура заземления, по крайней мере одна из которых является заземленной нейтралью электрооборудования, связанного с контуром заземления. Частоту измерителя напряженности магнитного поля настраивают на частоту источника переменного тока, а о месте прокладки элементов контура заземления и его связей с электрооборудованием судят путем смещения измерителя параллельно поверхности земли в направлении, перпендикулярном предполагаемой трассе контура заземления и определения положения измерителя напряженности магнитного поля, отвечающего максимальному значению напряженности магнитного поля [1].

Наиболее близким к предлагаемому является способ определения трасс прокладки искусственного заземлителя в грунте, согласно которому источник переменного тока (ИПТ) 400 Гц подключается к двум разнесенным по территории точкам заземляющего устройства исследуемой электроустановки. С помощью измерителя напряженности магнитного поля (ИПМ) определяется фон излучения магнитного поля на территории электроустановки при отключенном ИПТ. Фиксируется наибольшее значение фона излучения магнитного поля. В дальнейшем устанавливается такое значение тока ИПТ, чтобы уровень магнитного поля полезного сигнала превышал максимальное фоновое не менее чем в 10 раз. Определяется трасса прокладки магистралей заземления без вскрытия грунта. Для этого ИПТ подключается к различным удаленным одна от другой точкам ЗУ и с помощью ИПМ определяются и наносятся на план места прокладки и соединений поперечных и продольных заземлителей [2].

Недостаток известного способа заключается в том, что при наличии значительного внешнего магнитного поля (например, в условиях действия тяговой подстанции переменного тока) снижается точность определения трассы прокладки элементов заземляющего устройства, а в некоторых случаях определение трассы прокладки элементов заземляющего устройства становится невозможным.

Цель изобретения - сохранить возможность и повысить точность определения трассы прокладки элементов заземляющего устройства в случае значительного внешнего магнитного поля.

Для достижения указанной цели в предлагаемом способе определения трассы прокладки элементов заземляющего устройства, включающим подключение источника переменного тока к заземляющему устройству, перемещение одного потенциального электрода по поверхности земли перпендикулярно предполагаемой трассе прокладки элемента заземляющего устройства, измерение разности потенциалов между перемещаемым потенциальным электродом и потенциальным электродом, отнесенным в зону «нулевого потенциала», трассу прокладки элементов заземляющего устройства определяют по максимальному значению потенциала поверхности земли над элементом.

На фиг.1 представлена функциональная схема устройства, реализующая измерения по данному способу.

Устройство содержит источник переменного тока 1, токовый электрод 2, вольтметр 3, потенциальные электроды 4, 5.

Трасса прокладки элементов заземляющего устройства определяется следующим образом. При подключении источника переменного тока 1 одним выводом к заземляющему устройству 6, а другим к выносному токовому электроду 2, ток от генератора проходит по цепи, образованной элементами заземляющего устройства 6 и выносным токовым электродом 2. При этом ток, стекающий с элемента заземляющего устройства, создает на поверхности земли потенциал φ, величина которого максимальна над элементом заземляющего устройства (см. фиг.2). Потенциальный электрод 4 помещают в зону «нулевого потенциала», потенциальный электрод 5 перемещают по поверхности земли перпендикулярно предполагаемой трассе прокладки элемента заземляющего устройства 6, измеряют потенциал поверхности земли вольтметром 3 между перемещаемым потенциальным электродом в точках a, b, c, d, e и потенциальным электродом, отнесенным в зону «нулевого потенциала», трассу прокладки элементов заземляющего устройства определяют по максимальному значению потенциала поверхности земли над элементом.

Так как влияние внешнего электрического поля на потенциал поверхности земли много меньше, чем на магнитное поле над поверхностью земли, сохраняется возможность и повышается точность определения трассы прокладки элементов заземляющего устройства в случае значительного внешнего электромагнитного поля (например, в условиях действия тяговой подстанции переменного тока).

Таким образом, предлагаемый способ позволяет сохранить возможность и повысить точность определения трассы прокладки элементов заземляющего устройства в случае значительного внешнего магнитного поля (например, в условиях действия тяговой подстанции переменного тока).

Использованные источники

1. Патент №2120643, МПК G01R 27/20, G01V 3/11. Способ определения электрофизических характеристик подземных металлических сооружений / Р.К.Борисов.

2. РД-153-34.0-20.525-00. Методические указания по контролю состояния заземляющих устройств электроустановок. М.: СПО ОРГРЭС, 2000. 64 с.

Способ определения трассы прокладки элементов заземляющего устройства, включающий подключение источника переменного тока к заземляющему устройству, отличающийся тем, что перемещают один потенциальный электрод по поверхности земли перпендикулярно предполагаемой трассе прокладки элемента заземляющего устройства, измеряют разность потенциалов между перемещаемым потенциальным электродом и потенциальным электродом, отнесенным в зону «нулевого потенциала», трассу прокладки элементов заземляющего устройства определяют по максимальному значению потенциала поверхности земли над элементом.



 

Похожие патенты:

Изобретение относится к электротехнике, измерительной технике, а также к технике монтажа и измерения сопротивления заземляющих устройств. .

Изобретение относится к способам бесконтактной оценки с помощью электрохимического анализа эффективности катодной защиты подземных металлических сооружений. .

Изобретение относится к устройствам для обеспечения безопасной эксплуатации приборов офисной и бытовой техники и предназначено для контроля работоспособности защитного заземления (зануления) в розетке преимущественно европейского типа.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения глубины залегания и расстояния до элементов заземляющего устройства объектов энергоснабжения и тяговых подстанций железнодорожного транспорта.

Изобретение относится к области электроэнергетики. .

Изобретение относится к измерительной технике, а именно к технике измерения удельного электрического сопротивления заземляющих устройств. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения глубины залегания элементов заземляющего устройства объектов энергоснабжения и тяговых подстанций железнодорожного транспорта.

Изобретение относится к контрольно-измерительной технике и может быть использовано для диагностики целостности контакта вертикального элемента с контуром заземления объектов энергоснабжения и тяговых подстанций железнодорожного транспорта.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения глубины залегания элементов контура заземления объектов энергоснабжения и тяговых подстанций железнодорожного транспорта.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения глубины залегания элементов контура заземления объектов энергоснабжения и тяговых подстанций железнодорожного транспорта.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения наличия соединения в месте пересечения горизонтальных элементов заземляющего устройства

Изобретение относится к способам бесконтактной оценки с помощью электрохимического анализа эффективности катодной защиты подземных металлических сооружений

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения сопротивления заземляющего устройства тяговых подстанций электрифицированных на постоянном токе железных дорог

Изобретение относится к области защиты подземных металлических сооружений от коррозии и может быть использовано для обеспечения контроля поляризационного потенциала в установках катодной защиты подземных металлических сооружений, в частности магистральных трубопроводов. Техническим результатом заявленного изобретения является повышение точности измерения потенциала поляризации за счет более полного исключения влияния омической составляющей, флуктуации и спада потенциала за время задержки путем повторения второго цикла измерений с задержкой по времени, а также повышение производительности за счет снижения продолжительности измерений путем выбора оптимального режима измерений. Технический результат достигается благодаря тому, что способ измерения поляризационного потенциала подземного металлического сооружения содержит следующие операции: подключают вспомогательный электрод к подземному металлическому сооружению и входу вольтметра, осуществляют первый цикл измерений поляризационного потенциала через равные промежутки времени, по результатам которого проводят оценку флуктуации результатов измерения от времени, определяют минимальную частоту спектра флуктуации, выбирают время задержки, равное длительности периода минимальной частоты спектра флуктуации, отключают вспомогательный электрод от подземного металлического сооружения и по истечении времени, равного времени задержки, проводят второй цикл измерений поляризационного потенциала через промежутки времени, длительность которых составляет не менее чем время задержки, а значение поляризационного потенциала определяют путем экстраполяции результатов измерений второго цикла. 4 з.п. ф-лы, 4 ил., 2 табл.

Группа изобретений относится к предохранительным электрическим устройствам. Устройство (26) измерения сопротивления резистора (24) заземления установки содержит: источник (8) тока и амперметр (9), вторую электрическую ветвь (22) и третью электрическую ветвь (23). Источник (8) тока и амперметр (9) расположены на первой электрической ветви (21), выполненной с возможностью соединения фазы (5) сети (3) питания с заземлением (19) установки. Вторая электрическая ветвь (22) выполнена с возможностью соединения провода нейтрали (4) сети (3) питания с заземлением (19) установки. Вторая ветвь (22) содержит резистор (13), к клеммам которого подсоединен вольтметр (14), и первый конденсатор (10), последовательно соединенный с резистором. Третья ветвь (23) выполнена с возможностью соединения провода нейтрали (4) сети с заземлением (19) установки. Третья ветвь (23) содержит второй конденсатор (20) со значением емкости, превышающим емкость первого конденсатора (10). При этом второй конденсатор (20) включен параллельно первому конденсатору (10) и первому резистору (13). Зарядное устройство (1) для зарядки батареи автотранспортного средства содержит устройство (26). Технический результат заключается в повышении точности измерения сопротивления заземления. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение касается безопасности пользователя бортового устройства зарядки батареи автотранспортного средства и, в частности, оценки качества заземления сети питания, подключенной к устройству зарядки батареи автотранспортного средства. Защищенная система зарядки батареи автотранспортного средства от сети питания установлена на автотранспортное средство и содержит средства измерения частоты сети питания, средства подачи импульсов тока в сеть питания, средства измерения напряжения между землей и нулем сети питания, аналоговый фильтр для фильтрации на высоких частотах измеряемых напряжений, цифровой фильтр для фильтрации на низких частотах напряжений, отфильтрованных аналоговым фильтром, и средства определения сопротивления между землей и нулем сети по напряжениям, отфильтрованным цифровым фильтром, и по амплитуде импульсов тока. Цифровой фильтр включает в себя усредняющий фильтр, определяющий среднее значение по N измерениям напряжения, разделенным временным интервалом T+T/N, где Т - период сети, определенный средствами измерения частоты сети. Технический результат – повышение качества заземления сети питания, подключенной к устройству зарядки батареи автотранспортного средства. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники и может быть использовано для измерения сопротивления растеканию тока. Способ измерения сопротивления растеканию тока согласно изобретению заключается в том, что устанавливают вспомогательный потенциальный электрод, выполненный из материала, обеспечивающего максимальную внешнюю контактную разность потенциалов по отношению к заземлению. Определяют внешнюю контактную разность потенциалов с помощью вольтметра с высоким внутренним сопротивлением. Соединяют заземление и вспомогательный потенциальный электрод через высокоомное нагрузочное сопротивление и последовательно включенный амперметр. Измеряют ток, протекающий через нагрузочное сопротивление. Вычисляют сопротивление растеканию тока, применяя закон Ома для полной цепи. Техническим результатом от использования способа согласно изобретению является снижение трудоемкости и затрат на измерения сопротивления растеканию тока. 2 ил., 1 табл.
Наверх