Спектрометр-дозиметр

Изобретение относится к ядерной физике, дозиметрии, биофизике, радиационной медицине, химии, экологии и может быть использовано для детектирования газов в разных отраслях промышленности. Техническим результатом являются расширенные функциональные возможности устройства при сохранении полной автоматизации измерений. Сущность предлагаемого изобретения состоит в создании устройства для одновременного автоматического измерения и анализа потоков, спектров, доз альфа-, бета-, гамма-излучения веществ, а также типов и концентраций галоидсодержащих газов в атмосфере за счет организации параллельной работы двух блоков детекторов при совмещении процессов автоматизации измерений и анализа результатов с их оперативной передачей. 1 ил.

 

Предлагаемое изобретение относится к ядерной физике, дозиметрии, биофизике, радиационной медицине, химии, экологии и может быть использовано для детектирования газов в разных отраслях промышленности.

Известно многофункциональное устройство для детектирования утечки газов [пат. Россия №2280862, МПК8 G01N 27/68]. Оно содержит корпус с расположенным внутри него катодом, анодом и входным отверстием для детектируемого газа, средства для измерения тока разряда и высоковольтный источник питания, создающий напряжение, необходимое для поддержания коронного разряда между анодом и катодом, а катод выполнен из n игл, где n≥2, установленных симметрично относительно корпуса, на которые подано напряжение от высоковольтного источника питания, превышающее напряжение зажигания коронного разряда в детектируемом газе на острие n игл, при этом иглы катода выполнены с дополнительными внутренними каналами для подачи газа, соединенными с дополнительным устройством принудительной прокачки детектора газом.

Кроме детектирования наличия галоидсодержащего газа в атмосфере газовый детектор может использоваться в приборах для оценки типа этого газа и для измерение его концентрации.

Недостатки аналога заключаются в том, что отсутствуют измерение радиоактивности и автоматизация измерений.

Из числа аналогов наиболее близким по технической сущности к предлагаемому является устройство [пат. Россия №2029316, МПК8 G01T 1/24, G01T 1/16, G01T 1/02], которое и выбрано по качестве прототипа. Прототип, в отличие от аналога, выполняет измерение радиоактивности, и эти измерения полностью автоматизированы.

Технический результат в прототипе достигается определением радиоактивности при помощи трех расположенных друг под другом полупроводниковых детекторов альфа-, бета- и гамма-излучения разной толщины и из определенного материала, в том числе применением специального (третьего) детектора гамма-излучения толщиной несколько миллиметров, что позволяет существенно расширить динамический диапазон регистрируемых энергий гамма-излучения более точным определением суммарной дозы и полностью автоматизировать измерения.

Прототип содержит блок детекторов, состоящий из трех полупроводниковых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя (АЦП), оперативное запоминающее устройство (ОЗУ), блок интерфейса, блок управления и однокристальную электронно-вычислительную машину (ЭВМ), связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства и блока интерфейса, а первый, второй и третий выходы блока детекторов соединены с первыми входами соответственно первого, второго и третьего блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого, второго и третьего аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей, первые вход и выход блока управления и вторые выходы трех блоков аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей и блока управления подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы трех блоков аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления, вторые вход и выход однокристальной электронно-вычислительной машины, второй вход оперативного запоминающего устройства и вторые вход и выход блока интерфейса, имеющего также внешние вход и выход. Кроме того, прототип содержит индикатор и блок клавиатуры, первый выход которого подсоединен к общей шине, а вход и второй выход - ко второй шине управления, причем входы индикатора соединены соответственно первый - с общей шиной, а второй - со второй шиной управления.

Прототип работает следующим образом.

При регистрации альфа-, бета- или гамма-излучения электрический импульс с соответствующего полупроводникового детектора поступает на блок, в котором происходит усиление и формирование сигнала для последующего преобразования в АЦП, а также формирование запускающего и идентифицирующего импульса для блока управления. Код амплитуды после преобразования фиксируется во внутреннем регистре АЦП и в соответствующем программном цикле записывается в ОЗУ. Идентификационный код детектора, в котором зарегистрировано излучение, формируется блоком управления и считывается ЭВМ одновременно с кодом амплитуды. Преобразования в трех каналах происходят независимо с разбиением регистрируемого диапазона энергий на 63 уровня, что позволяет производить анализ регистрируемых альфа-, бета- и гамма-излучений по их спектральному, энергетическому и изотопному составу, используя при этом программно-реализованные метод ΔЕ-Е, логику совпадений - антисовпадений, а также определять дозу как суммарную, так и по каждому виду излучений.

Работой спектрометра-дозиметра управляет ЭВМ в соответствии с заданным режимом. Режим задается оператором в интерактивном режиме при помощи блока клавиатуры и интерфейсного блока. Управляющие сигналы от ЭВМ к периферийным устройствам передаются по шине управления. Быстродействие системы достигается за счет программно-аппаратной реализации цикла записи данных, выставляемых АЦП в ОЗУ. Аппаратную поддержку цикла записи осуществляет блок управления, используя для этого первую и вторую шины управления. Интерфейсный блок обеспечивает побайтный параллельный или последовательный обмен между спектрометром-дозиметром и ЭВМ любого типа, а также запись и чтение с кассетного магнитофона любого типа.

В соответствии с заданной программой измерений ЭВМ осуществляет управление работой спектрометра-дозиметра и производит накопление информации в ОЗУ. По завершении накопления и обработки данные отображаются на индикаторе или записываются на магнитофон, либо считываются ЭВМ для более детального анализа. Применение ЭВМ с набором подпрограмм, хранящимся в резидентном постоянном запоминающем устройстве, позволяет оперативно управлять прибором, изменять алгоритм обработки данных, а также использовать спектрометр-идентификатор-дозиметр совместно с ЭВМ любого типа.

Недостатком прототипа является функциональная ограниченность, связанная с невозможностью детектирования газов и отсутствием автоматического анализа результатов измерений с их оперативной передачей.

Задачей, на решение которой направленно заявляемое изобретение, является расширение функциональных возможностей за счет параллельного детектирования газов при совмещении процессов автоматизации измерений и анализа результатов с их оперативной передачей.

Техническим результатом являются расширенные функциональные возможности устройства при сохранении полной автоматизации измерений.

Поставленная задача решается тем, что в спектрометр-дозиметр, содержащий блок детекторов, состоящий из трех полупроводниковых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, оперативное запоминающее устройство, блок интерфейса, блок управления и однокристальную электронно-вычислительную машину, связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства и блока интерфейса, а первый, второй и третий выходы блока детекторов соединены с первыми входами соответственно первого, второго и третьего блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого, второго и третьего аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей, первые вход и выход блока управления и вторые выходы трех блоков аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей и блока управления подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы трех блоков аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления, вторые вход и выход однокристальной электронно-вычислительной машины, второй вход оперативного запоминающего устройства и вторые вход и выход блока интерфейса, имеющего также внешние вход и выход, введены второй блок детекторов, состоящий из трех газовых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, транслятор протоколов, приемопередатчик инфракрасного излучения и карманный персональный компьютер со встроенным мобильным сотовым телефоном, связанный беспроводным каналом с приемопередатчиком инфракрасного излучения, вход и выход которого соединены с первыми входом и выходом транслятора протоколов, а вторые вход и выход этого транслятора соединены с внешними входом и выходом блока интерфейса, причем первый, второй и третий выходы второго блока детекторов соединены с первыми входами соответственно четвертого, пятого и шестого блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно четвертого, пятого и шестого аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей и вторые выходы четвертого, пятого и шестого блоков аналоговых измерений подключены к первой шине управления, вторые выходы четвертого, пятого и шестого аналого-цифровых преобразователей подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы четвертого, пятого и шестого блоков аналоговых измерений связаны со второй шиной управления.

Сущность предлагаемого изобретения состоит в создании устройства для одновременного автоматического измерения и анализа потоков, спектров, доз альфа-, бета-, гамма-излучения веществ, а также типов и концентраций галоидсодержащих газов в атмосфере за счет организации параллельной работы двух блоков детекторов при совмещении процессов автоматизации измерений и анализа результатов с их оперативной передачей.

Сущность предлагаемого изобретения поясняется чертежом, где изображена функциональная схема предлагаемого устройства.

Спектрометр-дозиметр, содержащий блок 1 детекторов, состоящий из трех полупроводниковых детекторов, три блока 2, 3, 4 аналоговых измерений, три аналого-цифровых преобразователя 5, 6, 7, оперативное запоминающее устройство 8, блок 9 интерфейса, блок управления 10 и однокристальную электронно-вычислительную машину 11, связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства 8 и блока интерфейса 9, а первый, второй и третий выходы блока 1 детекторов соединены с первыми входами соответственно первого 2, второго 3 и третьего 4 блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого 5, второго 6 и третьего 7 аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей 5, 6, 7, первые вход и выход блока 10 управления и вторые выходы трех блоков 2, 3, 4 аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей 5, 6, 7 и блока управления 10 подсоединены к общей шине однокристальной электронно-вычислительной машины 11, а вторые входы трех блоков 2, 3, 4 аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления 10, вторые вход и выход однокристальной электронно-вычислительной машины 11, второй вход оперативного запоминающего устройства 8 и вторые вход и выход блока интерфейса 9, имеющего также внешние вход и выход. Кроме того, в устройство введены второй блок 12 детекторов, состоящий из трех газовых детекторов, три блока 13, 14, 15 аналоговых измерений, три аналого-цифровых преобразователя 16, 17, 18, транслятор 19 протоколов, приемопередатчик 20 инфракрасного излучения и карманный персональный компьютер 21 со встроенным мобильным сотовым телефоном, связанный беспроводным каналом с приемопередатчиком 20 инфракрасного излучения, вход и выход которого соединены с первыми входом и выходом транслятора 19 протоколов, а вторые вход и выход этого транслятора 19 соединены с внешними входом и выходом блока 9 интерфейса, причем первый, второй и третий выходы второго блока 12 детекторов соединены с первыми входами соответственно четвертого 13, пятого 14 и шестого 15 блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно четвертого 16, пятого 17 и шестого 18 аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей 16, 17, 18 и вторые выходы четвертого 13, пятого 14 и шестого 15 блоков аналоговых измерений подключены к первой шине управления, вторые выходы четвертого 16, пятого 17 и шестого 18 аналого-цифровых преобразователей подсоединены к общей шине однокристальной электронно-вычислительной машины 11, а вторые входы четвертого 13, пятого 14 и шестого 15 блоков аналоговых измерений связаны со второй шиной управления.

Устройство работает следующим образом.

Пусть в начальный момент времени оператором в интерактивном режиме при помощи карманного персонального компьютера 21 со встроенным мобильным сотовым телефоном задается режим работы спектрометра-дозиметра. По беспроводному каналу связи информация о режиме работы принимается приемопередатчиком 20 инфракрасного излучения и передается в транслятор 19 протоколов, в результате чего через общую шину задается режим работы однокристальной электронно-вычислительной машины 11, которая управляет работой спектрометра-дозиметра. Управляющие сигналы от электронно-вычислительной машины 11 к периферийным устройствам передаются по второй шине управления.

При регистрации альфа-, бета- или гамма-излучения электрический импульс с соответствующего полупроводникового детектора блока 1 поступает на соответствующий блок 2, 3 или 4 аналоговых измерений, а при регистрации галоидсодержащего газа электический сигнал с соответствующего полупроводникового детектора блока 12 поступает на соответствующий блок 13, 14 или 15 аналоговых измерений. В блоках аналоговый измерений 2, 3, 4, 13, 14, 15 происходит усиление и формирование сигналов для последующего преобразования в соответствующих аналого-цифровых преобразователях 5, 6, 7, 16, 17, 18, а также формирование запускающих и идентифицирующих импульсов для блока управления 10.

Код амплитуды после преобразования фиксируется во внутренних регистрах аналого-цифровых преобразователей 5, 6, 7, 16, 17, 18 и в соответствующем программном цикле записывается в оперативное запоминающее устройство 8. Идентификационный код детектора, в котором зарегистрирован сигнал, формируется блоком управления 10 и считывается однокристальной электронно-вычислительной машиной 11 одновременно с кодом амплитуды.

Быстродействие системы достигается за счет программно-аппаратной реализации цикла записи данных, выставляемых аналого-цифровыми преобразователями 5, 6, 7, 16, 17, 18 в оперативное запоминающее устройство 8. Аппаратную поддержку цикла записи осуществляет блок управления 10, используя для этого первую и вторую шины управления. Интерфейсный блок 9 обеспечивает побайтный параллельный или последовательный обмен информацией через транслятор 19 и приемопередатчик 20 с карманным персональным компьютером 21, встроенный мобильный сотовый телефон которого дает возможность записи и чтения информации с различных источников.

В соответствии с заданной компьютером 21 программой измерений электронно-вычислительная машина 11 осуществляет управление работой спектрометра-дозиметра и производит накопление информации в оперативном запоминающем устройстве 8. По завершении накопления и обработки данные пересылаются через блок 9 интерфейса, транслятор 19 и приемопередатчик 20 в компьютер 21, где они анализируются и отображаются на экране, а также могут быть переданы для дальнейшего более детального анализа. Применение электронно-вычислительной машины 11 с набором подпрограмм, хранящимся в карманном персональном компьютере 21 со встроенным мобильным сотовым телефоном, обеспечивающим доступ к различным источникам информации, позволяет оперативно управлять прибором, изменять алгоритм обработки данных, а также использовать спектрометр-идентификатор-дозиметр в различных информационно-измерительных системах.

В основу работы устройства положен принцип поочередной перекрестной обработки входной информации и синхронной параллельной обработки выходной информации, благодаря чему функции автоматизации измерений реализуются одним, а функции анализа результатов - другим вычислительным средством, имеющим эффективную связь с внешними системами.

Преобразования во всех шести каналах происходят независимо. В первых трех каналах выполняется разбиение регистрируемого диапазона энергий на 63 уровня, что позволяет производить анализ регистрируемых альфа-, бета- и гамма-излучений по их спектральному, энергетическому и изотопному составу, используя при этом программно-реализованные метод ΔЕ-Е, логику совпадений-антисовпадений, а также определять дозу как суммарную, так и по каждому виду излучений. В других трех каналах выполняются режимы детектирования наличия, оценки типа и измерения изменений концентрации галоидсодержащего газа в атмосфере, используя при этом программно-реализованные алгоритмы управления и анализа при восходящем и неизменном напряжении. Все результаты анализа могут быть представлены в карманном персональном компьютере в нужном виде и переданы с помощью встроенного мобильного сотового телефона в нужное место.

Таким образом, предложенное устройство обладает расширенными функциональными возможностями при сохранении полной автоматизации измерений.

Спектрометр-дозиметр, содержащий блок детекторов, состоящий из трех полупроводниковых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, оперативное запоминающее устройство, блок интерфейса, блок управления и однокристальную электронно-вычислительную машину, связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства и блока интерфейса, а первый, второй и третий выходы блока детекторов соединены с первыми входами соответственно первого, второго и третьего блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого, второго и третьего аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей, первые вход и выход блока управления и вторые выходы трех блоков аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей и блока управления подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы трех блоков аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления, вторые вход и выход однокристальной электронно-вычислительной машины, второй вход оперативного запоминающего устройства и вторые вход и выход блока интерфейса, имеющего также внешние вход и выход, отличающийся тем, что в устройство введены второй блок детекторов, состоящий из трех газовых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, транслятор протоколов, приемопередатчик инфракрасного излучения и карманный персональный компьютер со встроенным мобильным сотовым телефоном, связанный беспроводным каналом с приемопередатчиком инфракрасного излучения, вход и выход которого соединены с первыми входом и выходом транслятора протоколов, а вторые вход и выход этого транслятора соединены с внешними входом и выходом блока интерфейса, причем' первый, второй и третий выходы второго блока детекторов соединены с первыми входами соответственно четвертого, пятого и шестого блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно четвертого, пятого и шестого аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей и вторые выходы четвертого, пятого и шестого блоков аналоговых измерений подключены к первой шине управления, вторые выходы четвертого, пятого и шестого аналого-цифровых преобразователей подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы четвертого, пятого и шестого блоков аналоговых измерений связаны со второй шиной управления.



 

Похожие патенты:

Изобретение относится к области электрорадиотехники, более конкретно к детектированию входного сигнала путем распределения входного сигнала на независимые компоненты сигнала, которые усиливают независимо.

Изобретение относится к твердотельным детекторам ионизирующих излучений. .

Изобретение относится к твердотельным детекторам ионизирующих излучений. .

Изобретение относится к микроэлектронике, в частности к полупроводниковым детекторам ионизирующего излучения, и может быть использовано для регистрации излучений в ядерной физике, медицине, а также в цифровых аппаратах, регистрирующих заряженные частицы и гамма-кванты.

Изобретение относится к области цифровой радиографии, в частности к беспленочной регистрации изображения, и может быть применено в медицинской рентгенографии, дефектоскопии и рентгеновской компьютерной томографии, при использовании стандартных рентгеновских аппаратов.

Изобретение относится к полупроводниковым приборам, в частности к детекторам с высокой эффективностью регистрации светового излучения, в том числе видимой части спектра, и может быть использовано в ядерной и лазерной технике, а также в технической и медицинской томографии и т.п.

Изобретение относится к области дозиметрических приборов и может быть использовано для контроля радиационной обстановки на предприятиях при проведении работ, связанных с дезактивацией, и для индивидуального дозиметрического контроля.

Изобретение относится к радиационной технике и может использоваться для контроля постоянства или соответствия эталону конфигурации нескольких источников n, -излучения, а точнее отработавших тепловыделяющих сборок (ОТВС), находящихся в закрытых объемах без непосредственного доступа к содержимому этого объема.

Изобретение относится к области обнаружения радиоактивных веществ и ядерных материалов при несанкционированном перемещении их отдельными лицами через контролируемое пространство.

Изобретение относится к охране окружающей среды, в частности к радиоэкологическому мониторингу промышленного региона при оценке радиационной обстановки в регионе и влияния специализированных предприятий на радиоактивное загрязнение окружающей среды, оценке доз облучения населения.

Изобретение относится к способу и оборудованию для контроля мест подземных испытаний ядерного оружия, более точно, к способу и системе быстрого отделения и количественного измерения аргона 37.

Изобретение относится к области улучшения радиационной обстановки и индикации радиоактивности места аварии радиационно-опасных объектов. .

Изобретение относится к медицине, а именно к медицинской радиологии и диагностическим методам нейровизуализации. .

Изобретение относится к области медицинской диагностической техники и предназначено для получения проекционных рентгеновских изображений тела пациента в геометрии терапевтической установки в процессе предлучевой топометрической подготовки онкологических больных.

Изобретение относится к изделиям, включающим в себя полотна (ткани), компаунды и пленки (пленочные слои), которые могут обеспечить защиту от вредных воздействий, представляющих угрозу жизни (радиация, химические вещества, биологические агенты, огонь, металлические метательные снаряды).

Изобретение относится к области охраны окружающей среды, конкретнее к измерению радиоактивности объектов, более конкретно к способам выявления радиоактивных источников в движущихся объектах.

Изобретение относится к области измерения ионизирующих излучений, а именно гамма-излучения с применением газоразрядных счетчиков. .
Наверх