Генерация и отображение виртуального керна и виртуального образца керна, связанного с выбранной частью виртуального керна

Изобретение относится к геофизике и предназначено для генерации и отображения виртуального керна, аналогичного образцу части земной породы. Сущность: генерируют интегральную оценку породы в 1D, которая включает в себя один или более результатов физических измерений 1D, одно или более из интерпретируемых свойств породы в 1D, 1D каротажную диаграмму фации и 2 и 1/2 D результат измерения физической величины. В соответствии с 1D свойством из интегральной оценки породы и 2 и 1/2 D результатом измерения физической величины создают 2 и 1/2 D представление свойства породы при условии, что упомянутое свойство может быть соотнесено с 2 и 1/2 D физической величиной. В соответствии с 1D каротажной диаграммой фации и 2 и 1/2 D изображением физической величины объединяют 2 и 1/2 D изображение физической величины с 1D каротажной диаграммой фации, таким образом генерируя 2 и 1/2 D изображение фации. Технический результат: возможность создания текущего архива оценки породы ствола скважины. 3 н. и 7 з.п. ф-лы, 13 ил.

 

Текст описания приведен в факсимильном виде.

1. Способ генерации компиляции данных свойств породы как функции глубины и азимута в стволе скважины, при этом способ содержит этапы, на которых:
получают каротажные данные, включающие в себя результаты оценки породы, состоящие из следующих компонентов: петрофизической оценки, которая размещает уникальный набор петрофизических параметров для каждого уровня глубины по буровой скважине, оценки электрофации скальной породы, которая размещает уникальную электрофацию для каждого уровня глубины по буровой скважине, каротажного изображения буровой скважины, которое размещает физическую величину, такую как удельное сопротивление или акустический импеданс, для каждой глубины и азимута по стене буровой скважины и данных траектории ствола скважины,
создают в соответствии с интегральной оценкой породы, которая включает в себя один или более результатов физических измерений как функции глубины в стволе скважины и одно или более свойств породы как функции глубины в стволе скважины, и результат измерения каротажной диаграммы фации как функцию глубины в стволе скважины, и изображение результата физического измерения как функцию глубины и азимута в стволе скважины, представление результатов физических измерений и свойств породы как функции глубины и азимута в стволе скважины при условии, что каждый из результатов физических измерений и каждое из свойств породы могут быть соотнесены с упомянутым результатом физического измерения в упомянутом изображении, и
объединяют изображение результатов физических измерений как функцию глубины и азимута в упомянутом стволе скважины с результатом измерения каротажной диаграммы фации как функцией глубины в упомянутом стволе скважины, таким образом генерируя изображение фации как функцию глубины и азимута в стволе скважины, и определяют представление любого свойства породы как функцию глубины и азимута в стволе скважины, соответствующего изображению фации, при условии, что упомянутое свойство породы не может быть соотнесено с изображением результатов физических измерений, и
отображают изображение фации.

2. Способ генерации компиляции данных свойств породы, представляющих 2 и 1/2 D представление любого свойства породы, при этом способ содержит этапы, на которых:
(a) получают каротажные данные, включающие в себя результаты оценки породы, состоящие из следующих компонентов:
петрофизической оценки, которая размещает уникальный набор петрофизических параметров для каждого уровня глубины по буровой скважине, оценки электрофации скальной породы, которая размещает уникальную электрофацию для каждого уровня глубины по буровой скважине, каротажного изображения буровой скважины, которое размещает физическую величину, такую как удельное сопротивление или акустический импеданс, для каждой глубины и азимута по стене буровой скважины и данных траектории ствола скважины,
(b) генерируют интегральную оценку породы в 1D, которая включает в себя один или более результатов физических измерений в 1D, и одно или более интерпретируемых свойств породы в 1D, 1D каротажную диаграмму фации и 2 и 1/2 D результат измерения физической величины,
(c) в соответствие с 1D свойством из интегральной оценки породы и 2 и 1/2 D результатом измерения физической величины, создают 2 и 1/2 D представление свойства породы при условии, что упомянутое свойство может быть соотнесено с 2 и 1/2 D физической величиной, и
(d) в соответствие с упомянутой 1D каротажной диаграммой фации и упомянутым 2 и 1/2 D изображением физической величины, объединяют упомянутое 2 и 1/2 D изображение физической величины с упомянутой 1 D каротажной диаграммой фации, таким образом генерируя 2 и 1/2 D изображение фации, и
(e) отображают 2 и 1/2 D изображение фации.

3. Способ по п.2, дополнительно содержащий этапы, на которых:
(f) определяют средние значения любого свойства породы для каждого типа фации, встречающегося в каротажной диаграмме фации и, в ответ на упомянутое 2 и 1/2 D изображение фации, сгенерированное на этапе (d) объединения, определяют 2 и 1/2 D представление любого свойства породы, которое не может быть соотнесено с 2 и 1/2 D физической величиной, как на вышеупомянутом этапе (с),
причем упомянутое 2 и 1/2 D представление 1D свойства породы, которое может быть соотнесено с 2 и 1/2 D физической величиной, упомянутое 2 и 1/2 D изображение фации и упомянутое 2 и 1/2 D представление любого свойства породы, которое не может быть соотнесено с 2 и 1/2 D физической величиной, в совокупности формируют упомянутую компиляцию данных свойств породы, представляющую упомянутое 2 и 1/2 D представление любого свойства породы.

4. Способ по п.2, дополнительно включающий этапы, на которых
получают керн земной породы из позиции в скважине,
проводят измерения керна,
используют измерения керна для калибровки оценки породы.

5. Способ по п.2, дополнительно включающий этапы, на которых
выбирают местоположение на отображенном 2 и 1/2 D изображение фации, и
обеспечивают одно или более свойство породы, относящееся к выбранному местоположению.

6. Способ по п.5, дополнительно включающий этапы, на которых
получают керн породы из скважины, соответствующий выбранному местоположению,
получают реальные измерения керна и одного или более реального свойства породы, и
определяют соответствие одного или более свойства породы, относящегося к выбранному местоположению, и реального свойства породы, полученного при реальном измерении керна.

7. Способ по п.3, дополнительно включающий этапы, на которых
выбирают местоположение на 2 и 1/2 D изображение фации, и
обеспечивают среднее значение свойства породы, которое соответствует заранее определенному диаметру вокруг упомянутого местоположения.

8. Способ по п.7, дополнительно включающий этапы, на которых
получают керн породы из скважины, соответствующий выбранному местоположению,
получают реальные измерения керна и одного или более реального свойства породы, и
сравнивают одно или более свойство породы со средним значением свойства породы, обеспеченного в ответ на выбор местоположения.

9. Способ получения средней оценки всех свойств породы по заданной поверхности или объему, при этом способ содержит этапы, на которых:
(a) получают каротажные данные, включающие в себя результаты оценки породы, состоящие из следующих компонентов:
петрофизической оценки, которая размещает уникальный набор петрофизических параметров для каждого уровня глубины по буровой скважине, оценки электрофации скальной породы, которая размещает уникальную электрофацию для каждого уровня глубины по буровой скважине, каротажного изображения буровой скважины, которое размещает физическую величину, такую как удельное сопротивление или акустический импеданс, для каждой глубины и азимута по стене буровой скважины и данных траектории ствола скважины,
(b) генерируют интегральную оценку породы в 1D, которая включает в себя один или более результатов физических измерений 1D, и одно или более интерпретируемых свойств породы в 1D, 1D каротажную диаграмму фации и 2 и 1/2 D результат измерения физической величины, причем физическая величина включает в себя или удельное сопротивление, или акустический импеданс,
(c) в соответствие с 1D свойством из интегральной оценки породы и 2 и 1/2 D результатом измерения физической величины, создают 2 и 1/2 D представление свойства породы при условии, что упомянутое свойство может быть соотнесено с 2 и 1/2 D физической величиной,
(d) в соответствие с упомянутой 1D каротажной диаграммой фации и упомянутым 2 и 1/2 D изображением физической величины, объединяют упомянутое 2 и 1/2 D изображение физической величины с упомянутой 1D каротажной диаграммой фации, таким образом генерируя 2 и 1/2 D изображение фации,
(e) отображают 2 и 1/2 D изображение фации,
(f) определяют средние значения любого свойства породы для каждого типа фации, встречающегося в каротажной диаграмме фации, и, в соответствие с упомянутым 2 и 1/2 D изображением фации, сгенерированным на этапе (с) объединения, определяют 2 и 1/2 D представление любого свойства породы, которое не может быть соотнесено с 2 и 1/2 D физической величиной, как на вышеупомянутом этапе (b), причем упомянутое 2 и 1/2 D представление свойства породы 1D, которое может быть соотнесено с 2 и 1/2 D физической величиной, упомянутое 2 и 1/2 D изображение фации и упомянутое 2 и 1/2 D представление любого свойства породы, которое не может быть соотнесено с 2 и 1/2 D физической величиной, в совокупности формируют компиляцию данных свойств породы, представляющую упомянутое 2 и 1/2 D представление любого свойства породы,
(g) выбирают местоположение на упомянутой компиляции, причем упомянутая компиляция включает в себя одно или более свойств породы, и
(h) оценивают среднее значение каждого свойства породы, которое соответствует заранее определенному диаметру вокруг упомянутого местоположения на упомянутой компиляции.

10. Способ по п.9, дополнительно включающий этапы, на которых
(i) преобразовывают упомянутое среднее значение каждого свойства породы, оцененного на этапе оценки, в системные единицы, и
(j) сравнивают системные единицы со свойством породы, определенным на керне, полученном из скважины в местоположении, соответствующем выбранному местоположению на компиляции.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано для определения местоположения трассы магистральных сооружений. .
Изобретение относится к области геологоразведочных работ и может быть использовано в нефтегазодобывающей промышленности при поиске залежей нефти и газа в регионах с умеренным и холодно-гумидным климатом.
Изобретение относится к геофизике и может быть использовано для обнаружения подземного резервуара и определения его природы. .

Изобретение относится к устройствам для измерения геофизических параметров в придонной зоне морей и океанов и может быть использовано для оперативной оценки сейсмического и гидродинамического состояния исследуемых районов, а также для прогноза сейсмических и экологических последствий природного и техногенного характера.

Изобретение относится к способам обнаружения возможности наступления катастрофических явлений преимущественно на море. .

Изобретение относится к способам изучения геологических сред и позволяет изучать пространственное распределение в земле источников геофизических и геохимических полей, которыми могут являться месторождения полезных ископаемых различных типов, зоны тектонических нарушений, археологические памятники и другие подземные объекты.
Изобретение относится к способам предотвращения неконтролируемого - лавинообразного извержения вулканов и организации контролируемого транспортирования магмы для ее использования при строительстве.

Изобретение относится к геофизике и может быть использовано при поисках нефтяных и газовых месторождений. .

Изобретение относится к области разведочной геофизики. .

Изобретение относится к нефтегазопромысловой геологии и может быть использовано для получения информации о продуктивности и контурах исследуемого участка площади бурением нескольких стволов из одной скважины

Изобретение относится к способам создания геологических моделей и может быть использовано для выбора оптимального варианта размещения скважин для добычи углеводородного сырья

Изобретение относится к области геофизики и может быть использовано для воспроизводства контура рудных залежей

Изобретение относится к способам определения параметров пласта

Изобретение относится к методам геофизических исследований земной коры

Изобретение относится к геофизике и может быть использовано при разведке нефтяных и газовых месторождений

Изобретение относится к технике изучения океана с помощью автономных и автоматических подводных аппаратов
Изобретение относится к комплексному методу геофизической разведки, включающему сейсморазведку и электроразведку, и может быть использовано для учета неоднородностей строения верхней части разреза (ВЧР)

Изобретение относится к области геофизических исследований скважин и может быть использовано для определения проницаемости горных пород в скважинах, бурящихся на нефть, газ или воду
Наверх