Способ проведения количественного масс-спектрометрического анализа состава газовой смеси

Способ проведения количественного масс-спектрометрического анализа состава газовой смеси, заключающийся в проведении калибровки прибора, регистрации масс-спектра исследуемой газовой смеси, определении входящих в исследуемую смесь компонентов путем идентификации масс-спектра и расчете их концентраций. Калибровку прибора проводят по индивидуальным газам путем одновременной регистрации масс-спектра и абсолютного давления газа в системе напуска масс-спектрометра, затем определяют коэффициенты абсолютной чувствительности, связывающие интенсивность ионного тока данного газа с его давлением, а одновременно с регистрацией масс-спектра исследуемой смеси регистрируют абсолютное давление в системе напуска масс-спектрометра, а расчет концентраций компонентов газовой смеси проводят по предложенной формуле. Способ позволяет проводить определение концентрации отдельных компонентов газовой смеси при наличии в ней неизвестных компонентов без приготовления эталонных калибровочных смесей, при этом точность измерений не зависит от числа компонентов смеси. 1 табл., 1 ил.

 

Изобретение относится к методам количественного физико-химического метода анализа и может быть использовано в любых областях науки и техники, где требуется количественное определение состава газовых сред.

Метод масс-спектрометрического анализа нашел широкое применение в лабораторной практике при решении ряда задач научного и прикладного значения. Классический количественный газовый масс-спектрометрический анализ проводится по схеме, включающей в себя следующие обязательные этапы [1-3]:

1. Калибровка масс-спектрометра.

Калибровка прибора проводится с использованием газовых смесей известного состава, и заключается она в получении соответствующих коэффициентов относительной чувствительности (КОЧ), связывающих концентрацию каждого компонента в исследуемой газовой смеси с интенсивностью соответствующего ионного тока в регистрируемом масс-спектре. При этом КОЧ одного из газов принимается за единицу.

Например, стоит задача количественного анализа газовых смесей, состоящих из компонентов: аргона, азота и гелия. Для проведения калибровки готовится газовая смесь известного состава: СAr+CN2Au,N2,Hе - концентрация каждого компонента в процентах). Проводится масс-спектрометрический анализ данной газовой смеси, регистрируется масс-спектр интенсивностей пиков ионнов: JAr, JN2, JHe. КОЧ одного т компонентов, например аргона, принимают равным 1 и вычисляют КОЧ для азота и гелия по следующим формулам:

2. Регистрируется масс-спектр исследуемой газовой смеси с неизвестным содержанием компонентов.

3. Проводится расчет концентраций компонентов газовой смеси по следующей

схеме.

По известным КОЧ и измеренным интенсивностям ионных токов (Jj) определяют концентрации (Cj) компонентов газовой смеси по формуле:

где Σ(Ji·KОЧi) - сумма произведений интенсивности ионного тока на соответствующий КОЧ для каждого компонента анализируемой газовой смеси.

Таким образом, как видно из соотношения (2), определение концентрации каждого компонента вычисляется как произведение интенсивностей ионных токов на КОЧ соответствующих компонентов исследуемой газовой смеси. Из этого следует, что при масс-спектрометрическом анализе газовой смеси, включающей в свой состав неизвестный газовый компонент, определение концентрации отдельных компонентов становится невозможным. Кроме того, погрешность определения концентрации отдельного компонента будет определяться суммой погрешности определения КОЧ каждого из компонентов и будет возрастать по мере увеличения их числа в газовой смеси. В этом заключаются основные недостатки существующего способа количественного масс-спектрометрического газового анализа. Подобный подход к проведению количественного масс-спектрометрического анализа распространен очень широко и был использован в работах [2, 3].

Наиболее близким по технической сущности к заявляемому изобретению является подход, реализованный в работе [3]. В данной работе описывается методика анализа водородно-гелиевых смесей и результаты ее применения при анализе газовых смесей, составленных и аттестованных объемным методом. Анализ проводился по классической схеме, включающей все необходимые этапы: калибровку прибора, заключающуюся в определении КОЧ, и непосредственно сам анализ газовой смеси. В методику измерений авторы ввели дополнение - стабилизировали давление в системе напуска масс-спектрометра на уровне 1.0 Торр путем применения пробоотборника большого объема (5 л), в который исследуемую газовую смесь перепускали из пробоотборника малого объема с точно измеренным давлением. Стабильность давления служила только для создания контролируемого газового потока, что снижало ошибку эксперимента, и в расчетах концентраций компонентов не использовалась. Данный способ обладает всеми недостатками классической схемы. Существует необходимость калибровки прибора по всем компонентам, входящим в исследуемую газовую смесь, что накладывает определенные ограничения в применении метода, например, при анализе газовых смесей с неизвестным компонентом или смесей, включающих интерферирующие пики. Кроме того, для расчета концентраций авторы работы [3] КОЧ всех изотопов водорода принимали равным единице. Как показали калибровки, проведенные заявляемым методом, КОЧ протия и дейтерия в зависимости от типа прибора и системы регистрации могут отличаться, в частности для масс-спектрометра МХ-7304 отличие составляет ~1,3 раза (см. фиг.1).

Задачей настоящего изобретения является расширение функциональных возможностей масс-спектрометрии путем разработки способа количественного анализа газовых смесей, включающих в свой состав неидентифицируемые газовые компоненты, упрощение методики анализа, повышение точности и достоверности измерений.

Технический результат, получаемый при использовании изобретения, заключается в том, что:

- реализуется возможность проводить определение концентрации отдельных компонентов газовой смеси при наличии в ней неизвестных газовых компонентов (с неизвестным КОЧ, или идентификация которых невозможна);

- можно определять концентрации компонентов газовой смеси, имеющей интерферирующие (накладывающиеся) на масс-спектре пики интенсивностей ионных токов, используя предлагаемый способ;

- точность определения концентрации отдельных компонентов предлагаемым способом не зависит от их числа в анализируемой смеси;

- для проведения калибровок масс-спектрометра не требуется приготовление дорогостоящих эталонных газовых смесей;

- при анализе водородно-гелиевых смесей расчет концентраций компонентов проводится по экспериментально определенным КОЧ, а не на основании определенных допущений [3].

Для решения указанной задачи и достижения технического результата в известном способе проведения количественного масс-спектрометрического анализа газовых смесей, заключающемся в проведении калибровки прибора, определении масс-спектра исследуемой газовой смеси, определении входящих в исследуемую смесь компонентов путем идентификации масс-спектра и расчете концентраций компонентов, согласно изобретению калибровку прибора проводят по индивидуальным газам, путем одновременной регистрации масс-спектра и абсолютного давления газа в системе напуска масс-спектрометра. На основании калибровки определяют коэффициенты абсолютной чувствительности, связывающие интенсивность ионного тока данного газа с его давлением. При определении масс-спектра исследуемой газовой смеси, одновременно с регистрацией масс-спектра, регистрируют абсолютное давление газа в системе напуска масс-спектрометра, и расчет концентраций компонентов газовой смеси проводят по формуле:

где PΣ - абсолютное давление исследуемой газовой смеси в системе напуска масс-спектрометра;

Pj - парциальное давление определяемого компонента в исследуемой газовой смеси, вычисляемое по формуле:

где Aj - коэффициент абсолютной чувствительности данного компонента в исследуемой газовой смеси, определяемый при калибровке, Торр/В;

J- интенсивность ионного тока определяемого компонента в исследуемой газовой смеси, измеряемая в ходе анализа, В;

bj- безразмерный коэффициент, учитывающий нелинейность регистрации, определяемый при калибровке.

Введение дополнительного датчика регистрации абсолютного давления в системе напуска масс-спектрометра с диапазоном менее l Topp позволило ввести в расчет концентрации индивидуальных компонентов параметр абсолютного давления (3), что привело к реализации технического результата изобретения.

На чертеже представлены экспериментально полученные калибровочные зависимости (4) интенсивности ионного тока от его абсолютного давления в системе напуска масс-спектрометра для газов: СО, N2, Н2, D2 и 4Не. Из представленных на фигуре 1 зависимостей видно, что коэффициент b, для указанных газов, равен 1.

Предлагаемый способ проведения количественного масс-спектрометрического анализа состава газовых смесей реализован таким образом. Для измерения давления в системе напуска устанавливают датчик абсолютного давления с диапазоном рабочих давлений 0÷1,0 Торр. После чего проводят калибровку прибора. Для этого из пробоотборника или стандартного баллона в систему напуска масс-спектрометра подают индивидуальный газ до значения давления Pmin≈50 мТорр, и проводят измерение интенсивности пика ионного тока. Далее, ступенчато увеличивают давление по ΔР≈50 мТорр, проводя при этом измерение интенсивности пика иона и давления в системе напуска. Таким образом, давление доводят до максимального значения Рmах≈900 мТорр. После этого проводят повторный цикл калибровок, но уже с уменьшением давления в системе напуска от Рmах до Pmin. Данную последовательность операций повторяют не менее трех раз.

Для определения коэффициентов Aj, bj в уравнении (4) проводят не менее 100 измерений {Jj, Pj). Далее, зная абсолютное давление индивидуального газа и интенсивность ионного тока, применяя метод наименьших квадратов, рассчитывают коэффициенты: Aj, bj в уравнении (4). Калибровки проводят для всех интересующих газов, после чего приступают к проведению анализов исследуемой смеси.

Для проведения масс-спектрометрического анализа пробоотборник с исследуемой газовой смесью подсоединяют к системе напуска масс-спектрометра и проводят регистрацию масс-спектра. При этом одновременно с интенсивностью ионных токов отдельных компонентов (J) регистрируют абсолютное давление (РΣ) газа в системе напуска масс-спектрометра. Расчет концентраций компонентов газовой смеси (Сj) проводят по формуле (3). Ниже приведен пример определения состава газовой смеси, состоящей из двух компонентов, имеющих интерферирующие (неразделяющиеся) пики интенсивности ионных токов. Предположим, что проведен анализ газовой смеси, состоящей из гелия и дейтерия. На приборе низкого разрешения (менее 50) в масс-спектре будет регистрироваться только один пик с массовым числом 4. Проведя масс-спектрометрический анализ данной смеси и основываясь на ранее проведенных калибровках, определим концентрацию компонентов данной смеси. Очевидно, что регистрируемая интенсивность пика (JΣ) складывается из суммы интенсивностей пиков ионных токов гелия (J) и дейтерия (JD2):

,

а регистрируемое давление анализируемой газовой смеси в системе напуска масс-спектрометра (PΣ) равно сумме парциальных давлений анализируемых компонентов газовой смеси:

С учетом уравнения (4) и на основании определенных при калибровке коэффициентов А, AD2 и того, что b=bD2=1, получаем:

отсюда:

Далее по формуле (4) находим парциальные давления Р, PD2 и соответственно концентрации гелия и дейтерия,

Была приготовлена газовая смесь [34,15 об.% D2 + 65,85 об.% 4Не] и проведен ее масс-спектрометрический анализ. Анализ состоял из пяти серий измерений по 1000 масс-спектров в каждой и проводился на приборе МХ-7304. Данный масс-анализатор относится к классу приборов с низким разрешением, вследствие чего пики дейтерия и гелия регистрируются как один пик. Коэффициенты абсолютной чувствительности для дейтерия AD2=11,152 и гелия А=32,54, были определены предварительно на чистых газах. Результаты вычисленных концентраций дейтерия и гелия приведены в таблице 1.

Таблица
Результаты определения количественного состава дейтерий-гелиевой смеси на масс-спектрометре МХ-7304
РΣ, Торр IΣ, В D2, об.% 4Не, об.%
68,86 3,431 32,40 67,6
68,45 3,391 31,91 68,09
68,18 3,505 35,08 64,92
67,9 3,48 34,82 65,18
67,52 3,501 35,83 64,17
Ср. зн. 34,01 65,99
Ср. кв. откл. 1,74

Таким образом, предлагаемый способ проведения масс-спектрометрического анализа позволяет определять концентрации компонентов газовой смеси даже в том случае, когда пики ионных токов регистрируемого масс-спектра не разделяются прибором, и даже при наличии в исследуемой смеси неидентифицируемого компонента.

Литература

1. А.А.Сысоев, М.С.Чупахин. Введение в масс-спектрометрию. М., Атомиздат, 1977 г.

2. Ю.А.Милешкин, Н.Н.Рязанцева. Применение масс-спектрометра МХ-7304 при работе с газовыми смесями, содержащими тритий. Вопросы атомной науки и техники. Серия Термоядерный синтез, вып. 4, стр.42-44, 1991.

3. В.К.Капышев, Ю.А.Милешкин и др. Методика определения изотопного состава водорода и гелия в тритиевой технологической системе установки ТСП. Вопросы атомной науки и техники. Серия Термоядерный синтез, вып. 4, стр.38-41, 1991.

Способ проведения количественного масс-спектрометрического анализа состава газовой смеси, заключающийся в проведении калибровки прибора, регистрации масс-спектра исследуемой газовой смеси, определении входящих в исследуемую смесь компонентов путем идентификации масс-спектра и расчете их концентраций, отличающийся тем, что калибровку прибора проводят по индивидуальным газам путем одновременной регистрации масс-спектра и абсолютного давления газа в системе напуска масс-спектрометра, определяют коэффициенты абсолютной чувствительности, связывающие интенсивность ионного тока данного газа с его давлением, а одновременно с регистрацией масс-спектра исследуемой смеси регистрируют абсолютное давление в системе напуска масс-спектрометра и расчет концентраций компонентов газовой смеси (Сj) проводят по формуле:

где P - абсолютное давление [Торр] исследуемой газовой смеси в системе напуска масс-спектрометра;
Pj - парциальное давление [Торр] определяемого компонента в исследуемой газовой смеси, вычисляемое по формуле:

где Aj - коэффициент абсолютной чувствительности данного компонента в исследуемой газовой смеси, определяемый при калибровке [Торр/В];
J - интенсивность ионного тока определяемого компонента в исследуемой газовой смеси (определяется в ходе анализа) [В];
bj - безразмерный коэффициент, учитывающий нелинейность регистрации, определяемый при калибровке.



 

Похожие патенты:

Изобретение относится к устройствам для контроля содержания примесей веществ в газе с использованием преимущественно фотоионизационного детектора и способу его работы.

Изобретение относится к устройствам для контроля примесей в газовых смесях с использованием преимущественно фотоионизационного детектора. .

Изобретение относится к области газового анализа, в частности паров взрывчатых, наркотических и отравляющих веществ. .

Изобретение относится к газоанализаторам, основанным на фотоионизационном принципе детектирования, которые применяются для контроля содержания органических и неорганических веществ в воздухе.

Изобретение относится к области аналитического приборостроения, а конкретно к спектрометрам дрейфовой подвижности для обнаружения паров органических веществ в составе воздуха.

Изобретение относится к области аналитического приборостроения, а более конкретно к дрейф-спектрометрам для обнаружения паров органических веществ в составе воздуха.

Изобретение относится к поверхностно-ионизационным источникам ионов органических соединений, применяемым, например, в дрейф-спектрометрах или иных аналитических устройствах.

Изобретение относится к области аналитического приборостроения, а более конкретно к спектрометрам дрейфовой ионной подвижности, предназначенным для обнаружения следовых количеств паров органических веществ в составе воздуха, в частности паров органических молекул из класса взрывчатых, наркотических и физиологически активных веществ.

Изобретение относится к устройствам для контроля примесей в газе с использованием фотоионизационного детектора. .

Изобретение относится к области количественного анализа содержащихся в кислороде примесей - окислов углерода и углеводородов. .

Изобретение относится к средствам анализа примесей различных веществ в газах с использованием фотоионизационного детектора (ФИД), входящего в состав газоанализатора

Изобретение относится к конструкции спектрометров ионной подвижности, которые находят широкое применение для контроля содержания различных веществ в воздухе и, в частности, для обнаружения малых концентраций взрывчатых и наркотических веществ

Изобретение относится к способу и приспособлению для выработки положительно и/или отрицательно ионизированных анализируемых газов для анализа газов в спектрометре ионной подвижности или в масс-спектрометре

Изобретение относится к способу измерения подвижности ионов, в котором ионы в среде переносятся посредством электрического поля и измеряется их подвижность

Изобретение относится к газосигнализаторам для порогового обнаружения в воздухе паров и аэрозолей токсичных и отравляющих веществ

Изобретение относится к системам для обнаружения в воздухе токсичных и опасных веществ. Предложен способ измерения концентрации HNO3 в воздухе, в котором согласно изобретению воздух, содержащий пары азотной кислоты, пропускают через холодный реактор, измеряют текущую (фоновую) концентрацию NO2 в воздухе, значение которой запоминают в микропроцессорном блоке как C1, затем нагревают реактор до температуры 250-350°C, измеряют концентрацию NO2, выделяемого при термическом разложении HNO3, значение которой запоминают в микропроцессорном блоке как С2 и определяют концентрацию паров азотной кислоты в воздухе по определенной формуле. Также предложено устройство для осуществления описанного выше способа, содержащее воздухозаборную трубку (1), побудитель расхода (5) для прокачки воздуха, сенсор (4) для измерения концентрации NO2 в воздухе и микропроцессорный блок (8) для управления работой устройства и запоминания значений концентрации NO2, в котором согласно изобретению на входе в воздухозаборную трубку (1) установлен реактор (2) с периодически нагреваемым катализатором. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области аналитической техники, а именно к средствам измерений концентраций компонентов при газовом анализе. Фотоионизационный детектор для газоаналитической аппаратуры содержит лампу ультрафиолетового излучения с плоским выходным окном, над которым размещена проточная камера, образованная двумя дисковыми электродами, расположенными друг над другом, изготовленными из металлов с различной работой выхода электронов и разделенными кольцеобразной фторопластовой прокладкой, электрометр, к которому подключены электроды, и регистратор сигнала детектора, подключенный к выходу электрометра, причем нижний электрод выполнен с центральным отверстием, а верхний снабжен каналом для входа потока анализируемого газа. Согласно изобретению детектор дополнительно содержит плоский нагреватель, размещенный на верхнем электроде с возможность теплового контакта с ним, и цилиндр из теплоизоляционного диэлектрического материала, размещенный между нижним электродом и плоским выходным окном лампы ультрафиолетового излучения так, что его ось симметрии совпадает с осью симметрии проточной камеры, при этом цилиндр снабжен центральным отверстием и каналом для выхода потока анализируемого газа, соединенным с этим отверстием. При этом нижняя сторона верхнего электрода покрыта слоем палладийсодержащего материала. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области обнаружения веществ в образце, в частности к спектрометрам ионной подвижности. Устройство обнаружения, содержащее участок ионизации, ионный затвор, содержащий два электрода, ионный модификатор, содержащий два электрода, дрейфовую камеру и коллектор. Ионный затвор и ионный модификатор скомбинированы так, что ионный затвор является одним из электродов ионного модификатора. Технический результат - минимизация времени исследования. 2 н. и 13 з.п. ф-лы, 2 ил.

Изобретение относится к газовым ионизационным многопроволочным камерам, в частности, к дрейфовым камерам с тонкостенными дрейфовыми трубками. Устройство для измерения местоположения проволок в газовых проволочных камерах в системе координат, связанной с несущей конструкцией камеры, включает излучатель падающего и детектор рассеянного на проволоке излучения, выполненный с возможностью перемещения перпендикулярно проволочной плоскости. При этом излучателем служит источник света, а в качестве детектора света используется прибор, непосредственно регистрирующий координаты изображения проволоки в проходящем или отраженном свете, например, микроскоп с электронным окуляром, установленный на оптической скамье и выполненный с возможностью автоматического считывания координат. Технический результат - возможность измерения местоположения проволок в полупрозрачной или прозрачной среде. 2 з.п. ф-лы, 4 ил.
Наверх