Способ оценки точности определения местоположения источника радиоизлучения пассивной разностно-дальномерной системой

Изобретение относится к области пассивной радиолокации и предназначено для проведения натурных испытаний опытных образцов пассивной разностно-дальномерной системы (РДС) при отсутствии одного из приемных постов. Достигаемый технический результат - обеспечение оценки точности определения местоположения источника радиоизлучения (ИРИ) пассивной РДС при отсутствии в его составе одного из приемных постов. Сущность заявленного способа заключается в том, что выполняют взаимно-корреляционное измерение временных задержек сигнала ИРИ, принятых ведущим и ведомым приемными постами, и дополнительно имитируют недостающий ведомый приемный пост путем определения координат его местоположения, которое симметрично местоположению ведомого приемного поста относительно линии «ведущий приемный пост - ИРИ», а в качестве сигнала ИРИ, принятого имитируемым ведомым приемным постом, используют сигнал от действующего ведомого приемного поста, а затем определяют местоположение ИРИ натурным методом. 2 ил.

 

Изобретение относится к области пассивной радиолокации и предназначено для проведения натурных испытаний опытных образцов пассивной разностно-дальномерной системы (РДС) при отсутствии в ее составе одного из приемных постов.

Опытные образцы техники, поступающие на предварительные, государственные, межведомственные испытания, могут поступать не в полной комплектации, а содержат отдельные составные части (ГОСТ РВ 15.210-2001, Военная техника. Испытания опытных образцов изделий и опытных ремонтных образцов изделий. Основные положения, Госстандарт России, М., 2001 г.).

Известен способ оценки точности определения местоположения ИРИ пассивной РДС, включающий взаимно-корреляционное измерение временных задержек сигнала ИРИ принятых ведущим и ведомым приемными постами, статистической обработки результатов измерений и оценки точности местоположения ИРИ по формуле («Радиотехнические системы»./ Под ред. Ю.М.Казаринова. М.: Высшая школа, 1990 г., стр.239-240)

где σr - среднеквадратическая погрешность измерения местоположения ИРИ;

с - скорость распространения радиоволны;

στ - среднеквадратическая погрешность измерения временных задержек сигнала ИРИ;

φ - угол пересечения линий положения (гипербол);

ψ1, ψ2 - базовые углы первой и второй пар приемных постов.

Данный способ реализуется с помощью имитационного математического моделирования. В основе имитационного математического моделирования лежит замена реальной физической системы ее приближенным отображением в виде алгоритма и соответствующего программного обеспечения, воспроизводящих на ЭВМ интересующих аспектов функционирования исходной системы (В.Т.Радзиевский, А.А.Сирота. «Информационное обеспечение радиоэлектронных систем в условиях конфликта». ИПРЖР, М., 2001 г., стр.66-87).

Способ является опытно-теоретическим и имеет недостатки перед натурным испытанием. Реальные физические системы, тракты, сигналы не участвуют в испытаниях, технические характеристики которых оказывают влияние на точность местоположения. Например, второй канал коррелятора, вычислительное устройство, трасса распространения r14, r24 и т.д.

Способ требует разработки дополнительного измерительного оборудования для каждого опытного образца.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому положительному результату является способ оценки точности определения местоположения ИРИ пассивной РДС с тремя приемными постами, включающий взаимно-корреляционное измерение временных задержек сигнала ИРИ принятых двумя парами приемных постов, один из которых ведущий, и по известным координатам приемных постов определяют местоположение ИРИ. (Теоретические основы радиолокации./ Под ред. Я.Д.Ширмана. Сов. радио, М., 1970 г., стр.494-497).

Данный способ не определяет местоположение ИРИ при отсутствии одного из приемных постов, что характерно при проведении предварительных, государственных и межведомственных испытаний.

Технический результат - обеспечение оценки точности определения местоположения источника радиоизлучения пассивной РДС при отсутствии в ее составе одного из приемных постов.

Технический результат достигается тем, что в известном способе оценки точности определения местоположения ИРИ пассивной РДС, включающий взаимно-корреляционное измерение временных задержек сигнала ИРИ, принятых ведущим и ведомым приемными постами, и дополнительно имитируют недостающий ведомый приемный пост, для чего определяют координаты его местоположения, которое симметрично местоположению ведомого приемного поста относительно линии «ведущий приемный пост - ИРИ», а в качестве сигнала ИРИ, принятого имитируемым ведомым приемным постом, используют сигнал от действующего ведомого приемного поста, а затем оценивают точность местоположения ИРИ.

Проведенный анализ уровня техники позволяет установить, что технические решения, характеризующиеся совокупностью признаков, идентичных всем признакам, содержащимся в предложенной заявителем формуле изобретения, отсутствуют, что указывает на соответствие заявленного изобретения критерию охраноспособности «новизна».

Результаты поиска известных решений в данной и смежной областях техники, с целью выявления признаков, совпадающих с отличительными признаками заявляемого устройства, показали, что в общедоступных источниках информации не выявлены решения, имеющие признаки, совпадающие с его отличительными признаками. Из уровня техники также не подтверждена известность влияния отличительных признаков заявляемого изобретения на указанный заявителем технический результат. Следовательно, заявленное изобретение соответствует условию «изобретательский уровень».

Предлагаемое техническое решение промышленно применимо, так как совокупность характеризующих его признаков обеспечивает возможность его существования, работоспособность и воспроизводимость, так как для реализации заявляемого технического решения могут быть использованы известные материалы и оборудование.

На фиг.1 приведена схема взаимного размещения элементов РДС, необходимых для оценки точности местоположения ИРИ.

На фиг.2 приведена структурная схема устройства РДС, реализующая заявленный способ, где 1 - ИРИ; 2 - ведущий приемный пост; 3 - ведомый приемный пост; 4 - имитируемый приемный пост; 5 - двухканальный коррелятор; 6 - вычислительное устройство. Пунктирной линией изображены отсутствующие элементы, линии связи устройства, жирной линией - дополнительные связи, действия, реализующие способ.

Реализация способа содержит расчет координат имитируемого ведомого приемного поста 4 и ввод их в вычислительное устройство 5.

Координаты имитируемого ведомого приемного поста 4 (х4, y4) определяют из условия симметрии его местоположения действующему ведомому приемному посту 4 относительно линии «ведущий приемный пост - ИРИ» (фиг.1):

где r24, r23 - расстояние между приемными постами (базы) системы;

r14, r13 - расстояние от соответствующих ведомых приемных постов до ИРИ;

2, y2), (x3, y3), (х4, y4) - прямоугольные координаты местоположения соответствующих приемных постов;

1, y1) - прямоугольные координаты местоположения ИРИ.

Система уравнений (2) имеет положительное решение относительно х4, у4:

Вычисленные координаты имитируемого ведомого приемного поста 4 (х4, y4) вводят в вычислительное устройство 6.

Взаимно-корреляционное измерение временных задержек сигнала ИРИ 1, принятых ведущим 2 и ведомыми 3 и 4 приемными постами в устройстве РДС, решается путем нахождения временного сдвига между сигналами в двухканальном корреляторе, при котором корреляционные функции принимают максимальное значение

где τ - функция временного сдвига, вводимая в один из сигналов;

T - время интегрирования.

В качестве сигнала ИРИ 1, принятого имитирующим ведомым приемным постом 4, в способе используют сигнал ИРИ 1 от действующего приемного поста S(t-τ4)=S(t-τ3). Практически это действие реализуется с помощью дополнительного соединения выхода действующего ведомого поста 3 с входом второго канала коррелятора 5. Равенство задержек сигнала ИРИ 1 в двух каналах коррелятора 5 (τ42)=(τ32) соответствует на местности двум симметричным ветвям гипербол относительно ведущего приемного поста 2, а точка их пересечения определяет местоположение ИРИ 1 (х1, у1).

Из условия симметрии местоположений ведомых приемных постов 3, 4 точка пересечения гипербол будет лежать на линии симметрии (фиг.1).

В ходе испытаний местоположение ИРИ 1 выбирают на линии симметрии, а его координаты (х1, у1)' заранее определяют с высокой степенью точности, например с помощью спутниковой радионавигационной системы.

С помощью устройства РДС измеряют координаты ИРИ 1 (x1, y1) и сравнивают с заранее определенными (х1, у1)', а затем определяют точностные характеристики РДС.

Из выражения (1) при ψ1=ψ2=ψ среднеквадратическая погрешность измерения местоположения ИРИ составит

Изменяя местоположения ИРИ, определяют границы рабочей зоны РДС, σr σr0, где σr0 - предельное значение среднеквадратической погрешности измерения местоположения ИРИ, при которой имеет смысл функционирование РДС.

Таким образом, предложенный способ позволяет натурным методом оценивать точность определения местоположения ИРИ, проводить испытания опытного образца пассивной РДС при отсутствии в ее составе одного из приемных постов.

Способ оценки точности определения местоположения источника радиоизлучения пассивной разностно-дальномерной системой, включающей ведущий и действующий ведомый приемные посты, отличающийся тем, что имитируют дополнительный ведомый приемный пост путем определения его координат из условия симметрии его местоположения действующему ведомому приемному посту относительно линии «ведущий приемный пост - источник радиоизлучения», в качестве сигнала источника радиоизлучения, принятого имитируемым ведомым приемным постом, используют сигнал от действующего ведомого приемного поста, при этом точность определения местоположения источника радиоизлучения оценивают путем взаимно-корреляционного измерения временных задержек сигнала источника радиоизлучения, принятого ведущим, действующим ведомым и имитируемым ведомым приемными постами пассивной разностно-дальномерной системы, причем равенство задержек сигнала, принятого действующим ведомым и имитируемым ведомым приемными постами, соответствует на местности двум симметричным ветвям гипербол относительно ведущего приемного поста, а точка их пересечения определяет местоположение источника радиоизлучения.



 

Похожие патенты:

Изобретение относится к способам и устройству для установления местоположения приемника при помощи радиосигналов GPS. .

Изобретение относится к радиотехнике и может быть использовано в системах связи для компенсации задержек принимаемых сигналов в радиоприемниках определения местоположения.

Изобретение относится к радиотехнике и может быть использовано в системах дистанционного контроля ядерных и иных взрывов, предупреждения о запусках ракет, наблюдения за сейсмической активностью.

Изобретение относится к радиотехнике и может быть использовано в системах дистанционного контроля ядерных и иных взрывов, предупреждения о запусках ракет, наблюдения за сейсмической активностью.

Изобретение относится к радиотехнике и может быть использовано в системах определения местоположения объекта. .

Изобретение относится к определению местоположения в системах радиосвязи. .

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля при решении задачи скрытного определения координат объектов-носителей источников радиоизлучения (ИРИ) с направленными антеннами

Изобретение относится к области радиочастотной идентификации. Достигаемый технический результат изобретения - повышение точности и дальности определения местоположения передатчика сигнала. Способ и система определения местоположения передатчика сигнала по времени прибытия сигнала используют отдельную обработку сигнала, принятого через несколько антенн и приемных трактов, ожидание характерных точек принятого сигнала, измерение времени появления характерных точек принятого сигнала, суммирование с накоплением для определения среднего арифметического измеренных значений времени появления характерных точек принятого сигнала и вычисление местоположения передатчика сигнала с использованием среднего арифметического измеренных значений времени появления характерных точек принятого сигнала в качестве времени прибытия сигнала. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к области радиотехники, а именно к оценке положения космического аппарата (6), и может быть использовано, в частности, для оценки положения спутника, вращающегося вокруг Земли. Технический результат заключается в обеспечении отсутствия необходимости отправки шаблона опорного сигнала, излучения космическим аппаратом какой-либо последовательности запуска и необходимости адаптации космического аппарата и, таким образом, в улучшении оценки положения космического аппарата. Для этого система включает в себя принимающие станции (4) для приема сигналов, переданных от космического аппарата (6), и обрабатывающую станцию (2) для приема данных от принимающих станций (4), где каждая принимающая станция (4) записывает во время окна (8) записи сигналы, переданные от космического аппарата (6), и передает в обрабатывающую станцию (2) данные, представляющие упомянутые записанные, причем окна (8) записи, ассоциированные с каждой из принимающих станций (4), сдвинуты и/или имеют различный размер по отношению друг к другу. Обрабатывающая станция (2) коррелирует записанные сигналы для оценки разности расстояний между космическим аппаратом (6) и каждой из множества принимающих станций и для оценки положения космического аппарата (6). 5 н. и 17 з. п. ф-лы, 10 ил., 1 табл.

Изобретение относится к области радиотехники, а именно к беспроводным мобильным сетям или точкам доступа беспроводной локальной сети, и может быть использовано при определении местоположения пользователя. Технический результат заключается в обеспечении возможности получения оценки местоположения мобильного устройства без необходимости в синхронизации часов на различных приемных станциях. Для этого предоставляются способ, устройство и компьютерный программный продукт, предназначенные для использования при согласовании по времени относительного хода часов индивидуальных приемных станций, а также при соответствующем моделировании для получения разности времен прихода сигнала от устройства пользователя, которая может использоваться для коррекции разности времен прихода на основании моделируемого хода часов и приводит к коррекции согласования по времени принимаемых пользователем сигналов, что применимо к множеству пар приемных станций, и в том числе к передаваемым сигналам маяка, и позволяет корректировать оценку местоположения устройства пользователя. 4 н. и 11 з.п. ф-лы, 6 ил.

Изобретение относится к радиолокации и может быть использовано для повышения точности определения местоположения и других параметров наземных источников радиоизлучений (ИРИ) с помощью систем радиотехнической разведки (СРТР). Достигаемый технический результат - повышение достоверности отождествления сигналов в многоцелевой обстановке. Указанный результат достигается за счет того, что СРТР вычисляет оценки X ^ j , i ( k ) координат состояния обнаруженных и сопровождаемых ИРИ, на основании которых производится отождествление результатов измерения координат Xин,i(k), полученных в k-й момент времени, с соответствующим ИРИ, при этом для каждой координаты состояния каждого обнаруженного и сопровождаемого ИРИ определяется интервал значений, зависящий от дисперсий измерения величин Xиj,i(k), дисперсий скорости изменения координат состояния X ˙ j , i ( k ) , а также от коэффициента пропорциональности K, значение которого выбирается в диапазоне от 1 до 2. Совокупность интервалов по всем координатам состояния каждого ИРИ образует многомерный строб, при попадании в который результат измерения вектора состояния Xин(k) в k-й момент времени отождествляется, например, с конкретным ИРИ. Если измеренный вектор Xин(k) не попал в пределы ни одного из стробов j-го ИРИ, где j = 1, N ¯ , то принимается решение об обнаружении нового ИРИ с индексом N+1. 2 ил.

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля при решении задачи скрытного определения координат объектов-носителей источников радиоизлучения (ИРИ). Техническим результатом изобретения является возможность определения дальности до ИРИ, преимущественно станций УКВ диапазона, работающих за пределами радиогоризонта, антенны которых могут быть всенаправленными или остронаправленными, сканирующими или неподвижными. 2 ил., 1 табл.

Изобретение относится к областям радионавигации и радиолокации и может быть использовано для создания приемника многопозиционной неизлучающей радиолокационной системы, использующей в качестве сигнала подсвета воздушных целей навигационные сигналы космической системы навигации. Достигаемым техническим результатом является повышение вероятности правильного обнаружения навигационного сигнала, рассеянного воздушной целью. Сущность изобретения заключается в том, что при приеме слабого рассеянного навигационного сигнала осуществляется компенсация мощного навигационного сигнала прямого распространения, играющего в этом случае роль структурно-детерминированной помехи. Для этого при приеме входной реализации в виде смеси мощного прямого навигационного сигнала, слабого навигационного сигнала, рассеянного воздушной целью, и собственного шума приемника осуществляется сначала стандартная процедура обнаружения мощного прямого сигнала и определение его точных параметров, при этом входная реализация записывается в память. Далее формируется точная копия прямого сигнала и вычитается из записанной входной реализации. Полученный результат содержит только собственные шумы приемника и слабый рассеянный сигнал, обнаружение которого осуществляется традиционным способом. Исключение влияния основного лепестка корреляционной функции не полностью скомпенсированного навигационного сигнала прямого распространения осуществляется путем ограничения области возможных значений задержки при поиске слабого рассеянного сигнала, поскольку, исходя из геометрии распространения прямого и рассеянного сигналов, задержка рассеянного сигнала будет всегда больше задержки прямого сигнала. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области радиоэлектроники и может быть использовано при определении местоположения импульсных излучателей. Достигаемый технический результат - уменьшение габаритов устройства при сохранении точности определения дальности до источника импульсного излучения и направления на него. Указанный результат достигается за счет того, что устройств обнаружения содержит три широко направленные по азимуту антенны, три приемника, две переменные линии задержки, два блока определения малого временного интервала, вычислитель, блок из двух датчиков базового расстояния, блок вторичной обработки, индикатор. Перечисленные средства определенным образом соединены между собой. 1 ил.

Изобретение относится к области радиотехники и может быть использовано в разностно-дальномерных системах определения координат источников радиоизлучений (ИРИ), использующих в качестве координатно-информативного параметра взаимную задержку принятых радиосигналов. Достигаемый технический результат - повышение точности измерения взаимной задержки MSK (minimum shift keying) сигналов пакетных радиосетей при неизвестном законе первичной модуляции в разностно-дальномерных системах местоопределения за счет использования той особенности MSK сигналов, что прирост фазы на длительности одного элементарного импульса модулирующей последовательности составляет . Суть способа заключается в том, что время прихода сигнала в пункт приема измеряется по временному положению максимума апостериорной плотности вероятности, построенной через модуль результирующей взаимно корреляционной функции (ВКФ), вычисляемой с помощью парциальных ВКФ принимаемого в точке приема сигнала с четырьмя гармоническими колебаниями двух частот длительностью, равной длительности принимаемого сигнала (пакета), при этом модуль ВКФ формируется элементарными импульсами модулирующей последовательности, что позволяет получить узкий пик апостериорной плотности вероятности даже при неизвестном законе первичной модуляции. 11 ил.

Изобретение относится к радиотехнике, а именно к способам определения местоположения источника радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения местоположения ИРИ с летательного аппарата (ЛА), в частности с беспилотного ЛА. Техническим результатом изобретения является повышение точности определения координат ИРИ в пространстве на основе использования сферических поверхностей положения (СПП) ИРИ, формируемых вращением окружностей Аполлония вокруг осей, соединяющих соответствующие фокусы. При этом в качестве фокусов окружностей Аполлония выступают точки расположения ЛА в 3-мерном пространстве в различные моменты времени. Способ основан на приеме радиосигналов ИРИ в заданной полосе частот ∆F перемещающимся в пространстве измерителем, размещенным на ЛА, измерении и запоминании первичных координатно-информативных параметров, в качестве которых используют амплитуды напряженностей электрического поля (АНЭП), с одновременным измерением и запоминанием вторичных параметров (ВП) - пространственных координат ЛА, при этом измеряют и запоминают N≥5 раз совокупности АНЭП и ВП в процессе перемещения ЛА по произвольной траектории, вычисляют N-1 коэффициентов окружностей Аполлония, формируют N-1 СПП ИРИ, а в качестве координат ИРИ в пространстве принимают координаты точки пересечения N-1 указанных СПП ИРИ. 1 з.п. ф-лы, 3 ил.
Наверх