Гидрофон на поверхностных акустических волнах

Изобретение относится к акустоэлектронным устройствам на поверхностных акустических волнах (ПАВ) и может быть использовано в качестве приемника гидроакустических сигналов, распространяющихся в жидкой среде (гидрофон) преимущественно для создания беспроводных дистанционных гидроакустических систем буйкового типа с передачей информации по радиоканалу с частотной модуляцией несущей радиосигнала, а также в качестве датчика статического давления на ПАВ. Техническим результатом изобретения является повышение чувствительности и упрощение конструкции. Гидрофон на поверхностных акустических волнах содержит монокристаллическую пьезопластину, на поверхности которой расположены входной и выходной встречно-штыревые преобразователи (ВШП) для реализации линии задержки на ПАВ (резонатора на ПАВ); усилитель, включенный между двумя ВШП для реализации генератора на ПАВ, а также внешнюю мембрану, соединенную через шток с металлическим экраном, расположенным над поверхностью пьезопластины. Гидрофон характеризуется тем, что расстояние h между металлическим экраном, вносящим электрические возмущения, и поверхностью пьезопластины меньше длины волны λ. 10 ил.

 

Изобретение относится к устройствам на поверхностных акустических волнах (ПАВ), более конкретно - к гидрофонам и может быть использовано в качестве приемника гидроакустического сигнала, распространяющегося в жидкой среде для его дальнейшей радиотехнической обработки.

Гидрофоны предназначены для приема и преобразования сигналов переменных акустических давлений, распространяющихся в воде, в электрический сигнал. Традиционно эти устройства реализуются на основе пьезокерамических преобразователей, работающих на прямом пьезоэффекте.

Известен целый ряд гидрофонов [1-2] на поверхностных акустических волнах (ПАВ-гидрофон), служащих для приема гидроакустического сигнала. При этом описанные конструкции ПАВ-гидрофонов основаны на принципе работы датчика давления на ПАВ [3].

На пьезокристалле с нанесенными на его поверхность встречно-штыревыми преобразователями (ВШП) создается генератор на ПАВ на основе либо линии задержки на ПАВ, либо резонатора на ПАВ. При этом имеется мембрана, которая под действием гидроакустического давления (сигнала), распространяющегося в воде, механически деформируется в соответствии с законом изменения динамического давления в воде. Мембрана механически соединена с поверхностью пьезозвукопровода, по которому распространяется ПАВ. В результате непосредственного механического давления мембраны на пьезозвукопровод несущая частота f реализованного генератора на ПАВ будет изменяться. При этом частота модуляции генератора равняется частоте гидроакустического сигнала. Девиация частоты Δf генератора на ПАВ, повторяющая закон изменения внешнего динамического давления (гидроакустического сигнала), осуществляется за счет изменения скорости ПАВ, распространяющейся в пьезопластине. При этом изменение скорости ПАВ происходит за счет механической деформации пьезопластины. Преобразование внешнего динамического давления в механические деформации пьезопластины осуществляется в два этапа: сначала с помощью дискретного упругого элемента (мембраны) давление преобразуется в перемещение либо в усилие, затем это давление прикладывается к элементу на ПАВ.

Одна из конструкций ПАВ гидрофона реализована по схеме датчика давления с изгибом, опирающегося по краям стержня (фиг.1а). В частности, в работе [1] описан ПАВ гидрофон, где в качестве ПАВ элемента служили линии задержки из пьезопластины ниобата лития LiNbO3 с частотой 45 МГц, либо ПАВ резонаторы из пьезопластины ST-кварца с частотой около 80 МГц и добротностью 2.5·104. Размеры пьезопластин варьировались в пределах от 25 до 75 мм. Датчик строился по автогенераторной схеме. На фиг.1а: 1 - пьезопластина, 2 - ВШП, 3 - усилитель, 4 - корпус, 5 - внешнее давление, 6 - мембрана.

Как показали оценки, при приеме звуковых давлений в воде девиация частоты на выходе гидрофона мала: ~50 Гц, Δf/f~10-6, что создает проблемы для последующей демодуляции и обработки сигнала.

В работе [2] предложен вариант гидрофона по схеме фиг.1б с двумя резонаторами на кварцевой пьезопластине ST-среза диаметром 13 мм и толщиной 0.5 мм. Резонаторы имеют частоты, близкие к 62 МГц, и добротность 2×104. Давление на край кварцевого диска, закрепленного консольно, подводится через металлический стержень от тонкой металлической мембраны. Датчик выполнен по дифференциальной автогенераторной схеме. На фиг.1б: 1 - пьезопластина, 2 - ВШП, 3 - усилители, 4 - корпус, 5 - внешнее давление, 6 - мембрана.

Недостатком таких конструкций прежде всего является большая неравномерность амплитудно-частотной характеристики, что связано с механическими резонансами самой конструкции.

Наиболее близким к заявляемому техническому решению по совокупности признаков является датчик давления на ПАВ, принятый за прототип [4]. На фиг.2 показана конструкция такого датчика.

Генератор на ПАВ применяется в качестве датчика давления. ПАВ генератор реализован на линии задержки на ПАВ, которая включает пьезопластину 1, на которой нанесены два встречно-штыревых преобразователя (ВШП) 2, служащих для возбуждения и приема ПАВ и усилитель 3, включенный между ВШП. С одной стороны пьзопластина одноконсольно механически закреплена устройством 4, а с другой стороны на пьезопластину прикладывается внешнее механическое давление 5. При воздействии механического давления 5 на пьезопластину 1 резонансная частота f генератора на ПАВ будет изменяться на величину Δf за счет механической деформации пьезопластины. При этом изменение частоты генератора Δf будет пропорционально величине внешнего механического давления.

Недостатком прототипа является его низкая чувствительность. Относительное изменение частоты генератора на ПАВ составляет: Δf/f~10-6 и, как следствие, чувствительность такого датчика давления недостаточна высока.

Задачей изобретения является повышение чувствительности гидрофона на поверхностных акустических волнах, а также упрощение его конструкции.

Поставленная задача реализуется тем, что в гидрофоне на поверхностных акустических волнах, содержащем монокристаллическую пьезопластину, на поверхности которой расположены входной и выходной встречно-штыревые преобразователи (ВШП) для реализации линии задержки на ПАВ (резонатора на ПАВ); усилитель, включенный между ВШП для реализации генератора на ПАВ, а также внешнюю мембрану, соединенную через шток с закорачивающим металлическим экраном, расположенным над поверхностью пьезопластины, расстояние h между экраном, вносящим электрические возмущения, и поверхностью пьезопластины меньше длины волны λ.

Техническим результатом является повышение чувствительности и упрощение конструкции гидрофона на ПАВ, что позволяет использовать его в качестве гидрофона при создании высокоэффективных беспроводных дистанционных гидроакустических систем буйкового типа с передачей информации по радиоканалу с частотной модуляцией несущей радиосигнала либо в качестве датчика статического давления.

На фиг.3 показана конструкция гидрофона. ПАВ гидрофон состоит из пьезопластины 1 с нанесенными на ней встречно-штыревыми преобразователями 2, служащими для возбуждения и приема ПАВ; усилителя 3, включенного между двумя ВШП для реализации ПАВ генератора, и металлического экрана 4, расположенного над поверхностью пьезопластины (расстояние h между экраном и пьезопластиной меньше длины волны λ), соединенного через шток 5 с внешней мембраной 6, воспринимающей гидроакустический сигнал 7. Генератор на ПАВ, содержащий пьезопластину 1 с нанесенными на ее поверхность двумя ВШП 2 и усилитель 3 реализован по схеме, показанной на фиг.4.

При этом экран в отличие от [4] не передает непосредственно механическое усилие на пьезопластину 1, а вносит электрические возмущения электрического поля, сопровождающего поверхностную акустическую волну, путем искажения пространственного распределения поля. За счет механических колебаний мембраны 6, обусловленных внешним гидродинамическим сигналом 7 эти колебания через шток 5 передаются на металлический экран 4, расположенный над поверхностью пьезопластины 1, в результате чего изменяется частота реализованного на этой пьезопластине генератора на ПАВ (фиг.4). При этом изменение частоты генератора пропорционально частоте внешнего гидроакустического сигнала.

Потенциал и напряженность электрического поля во внешней области пространства вблизи поверхности кристалла уменьшаются до нуля на расстоянии порядка длины волны λ от поверхности пьезокристалла [5].

Металлический экран, расположенный вблизи поверхности кристалла (расстояние h между экраном и поверхностью кристалла меньше длины волны λ), будет вносить электрические возмущения, связанные с искажением пространственного распределения электрического поля, сопровождающего поверхностную акустическую волну, что в свою очередь приведет к изменению скорости ПАВ, а значит и частоты реализованного генератора на ПАВ. При этом, чем больше величина напряженности электрического поля в том месте, куда помещен экран, тем более эффективно будет металлический экран воздействовать на скорость ПАВ.

Одним из основных параметров ПАВ является коэффициент электромеханической связи: К2 = 2ΔV/V [5], где ΔV/V - относительное изменение скорости волны, обусловленное переходом к условию электрически закороченной (металлизированной) поверхности кристалла, ΔV=Vo-Vs, где Vo - скорость волны на открытой поверхности, Vs - скорость волны на закороченной поверхности. Чем больше величина К2, тем эффективнее происходит преобразование электрического поля в механические смещения в пьезоэлектрическом кристалле и, следовательно, тем эффективнее искажения пространственного распределения электрического поля металлическим экраном будут воздействовать на свойства распространяющейся ПАВ.

Известно [6], что электроакустические волны, распространяющиеся в тонких пьезопластинах (толщина Н пьезопластины сравнима с длиной волны λ), могут иметь значительно более высокий коэффициент электромеханической связи К2 (до 40-90%) по сравнению с волнами, распространяющимися в полубесконечной среде (до 5% в LiNbO3 и всего лишь около 0.1% в ST-X кварце).

На фиг.5 представлены зависимости скорости V распространения электроакустической волны Лэмба и коэффициента электромеханической связи K2 от нормированной толщины пьезопластины Н/λ(кривые V1, k1- для XY-среза LiNbO3, V2, k2 - для XY-среза LiNbO3, V3, k3 - для XY-среза PKN, V4, k4 - для XY-среза LiTaO3). Как видно из фиг.5, величина К2 может достигать очень высоких значений. Например, для XY-среза LiNbO3 при толщине пластины Н=0.1λ величина К2=35%.

Пусть, в частности, тонкий металлический экран, помещенный на расстоянии h от поверхности полубесконечного пьезокристалла, по которому распространяется поверхностная акустическая волна, имеет нулевой потенциал φ=0, а потенциал на поверхности пьезокристалла φ=φ0 (фиг.6).

На фиг.7 показана рассчитанная для этих условий зависимость скорости Vh ПАВ, распространяющейся вдоль открытой поверхности пьезокристалла 128YX-LiNbO3, от h/λ.

При h/λ→0 скорость ПАВ стремится к Vs=3.8709 км/с (скорость ПАВ вдоль закороченной поверхности), при h/λ>0.25 скорость ПАВ стремится к Vo=3.9789 км/с (скорость ПАВ вдоль открытой поверхности без экрана). Эта зависимость может быть использована для восприятия внешнего давления в ПАВ гидрофоне.

Максимальное относительное изменение скорости при приближении экрана от расстояния 0.25λ до нуля составляет для данного случая примерно 2.5·10-2, что существенно больше, чем у конструкций, упомянутых выше (порядка 10-6).

Другой вариант предлагаемой конструкции ПАВ гидрофона основан на использовании электроакустической волны, распространяющейся в тонкой пьезопластине (волна Лэмба) (толщина пластины h порядка длины волны λ).

На фиг.8 показана пьезопластина толщиной h, вблизи которой на расстоянии hs от ее поверхности помещен металлический экран.

Рассчитанные зависимости скорости Vo (обе поверхности пластины открыты) и K2 от относительной толщины пластинки h/λ для ХY-LiNbO3, полученные при условии, что экран отсутствует, показаны на фиг.9.

Зависимости скорости волны и K2 от расстояния до металлического экрана hs, рассчитанные при условии, что потенциал экрана равен нулю, для пластинки XY-LiNbO3 толщиной h=0.06λ (что соответствует максимуму K2 на фиг.8) показаны на фиг.10.

При hs/λ → 0 скорость волны Лэмба стремится к Vs (скорость волны в пластине, нижняя поверхность которой открыта, а верхняя металлизирована), при h/λ>0.1 скорость волны стремится к Vo (скорость волны в пластине, обе поверхности которой открыты, а экран отсутствует). Эта зависимость может быть использована для восприятия внешнего давления в гидрофоне.

Величины соответствующих скоростей показаны на фиг.9 и позволяют получить соответствующее значение относительного изменения скорости волны в пластине при приближении к ней металлического экрана с нулевым потенциалом. Это относительное изменение составляет в данном случае около 0.15, что примерно на порядок выше, чем в предыдущем варианте с экраном вблизи полубесконечной среды.

Предложенная конструкция гидрофона может быть использована также для реализации обычного датчика статического давления на ПАВ в случае подачи на внешнюю мембрану статического давления.

Кроме этого, еще один вариант конструкции, в которой в качестве металлического экрана, управляющего пространственным распределением электрического поля вблизи поверхности пьезоэлектрической среды, используется сама внешняя мембрана, принимающая статическое (динамическое) давление, что может привести к упрощению конструкции гидрофона (датчика).

Для повышения чувствительности ПАВ гидрофон (датчик давления на ПАВ) может быть выполнен по дифференциальной автогенераторной схеме [2] при реализации на пьезопластине одновременно двух генераторов на ПАВ с близкими несущими частотами f1≈f2. При этом металлический экран будет вносить электрические возмущения, воздействующие одновременно на оба генератора на ПАВ. Использование разностной частоты Δf=f2-f1 позволит дополнительно повысить чувствительность такой системы.

Таким образом, в изобретении предложена конструкция ПАВ гидрофона, воспринимающего гидроакустическое давление (сигнал), представляющая собой генератор на ПАВ с частотной модуляцией сигнала, принцип действия которого основан на управлении пространственным распределением электрического поля, сопровождающего поверхностную акустическую волну, с помощью металлического экрана, расположенного вблизи поверхности пьезоэлектрической пластины.

Источники информации

1. Das P., Lanz L. C. Barone D.A. A surface acoustic wave transmitting hydrophone//1978 Ultrason. Symp.Proc. P.458-463.

2. E.J.Staples, J.Wise, J.S.Schoenwald, T.C.Lim. Surface acoustic wave underwater sound sensors/1979 Ultrason. Symp.1979, P.870-873.

3. Das P., Lanzl C., Tiersten H. A pressure sensing acoustic surface wave resonator/1979 Ultrason. Symp. 1976, P.306-308.

4. United States Patent, patent Number 3878477, Apr. 15, 1975, J. Fleming, H. Karrer. Acoustic surface wave oscillator force-sensing devices.

5. Мэттьюз Г. Фильтры на поверхностных акустических волнах // М.: Радио и связь, 1981.

6. Двоешерстов М.Ю., Чередник В.И., Петров С.Г. Электроакустические волны Лэмба в пьезокристаллических пластинах // Акустический журнал, 2004, том 50, №5, с.633-639.

Гидрофон на поверхностных акустических волнах, содержащий монокристаллическую пьезопластину, на поверхности которой расположены входной и выходной встречно-штыревые преобразователи (ВШП) для реализации линии задержки на ПАВ (резонатора на ПАВ), усилитель, включенный между двумя ВШП для реализации генератора на ПАВ, а также внешнюю мембрану, соединенную через шток с металлическим экраном, расположенным над поверхностью пьезопластины, отличающийся тем, что расстояние h между металлическим экраном, вносящим электрические возмущения, и поверхностью пьезопластины меньше длины волны λ.



 

Похожие патенты:

Изобретение относится к гидроакустической антенной технике и может быть использовано при конструировании гидроакустических систем. .

Изобретение относится к ультразвуковой технике и может быть использовано для излучения и приема ультразвуковых сигналов в ультразвуковой аппаратуре, преимущественно в ультразвуковых толщиномерах.

Изобретение относится к ультразвуковой технике и может быть применено в гидроакустических системах обнаружения и классификации объектов. .

Изобретение относится к измерительным устройствам и может быть использовано для регистрации сейсмических колебаний почвы и вибрации. .

Изобретение относится к ультразвуковой технике. .

Изобретение относится к ультразвуковой технике и может быть использовано в технологических процессах, например при ультразвуковой обработке материалов. .

Изобретение относится к устройствам, генерирующим механические колебания в ультразвуковом диапозоне. .

Изобретение относится к области гидроакустики и может быть применено при изготовлении гидроакустических антенн. .

Изобретение относится к гидроакустической антенной технике и может быть использовано при конструировании гидроакустических систем. .

Изобретение относится к технике возбуждения низкочастотных гидроакустических сигналов. .

Изобретение относится к гидроакустике, а именно к маякам-ответчикам (МО) станций наведения судов, станций звукоподводной связи или другим приемоизлучающим гидроакустическим системам подобного назначения.

Изобретение относится к гидрофону с автоматической блокировкой, срабатывающему, когда глубина погружения превышает установленный регулируемый порог. .

Изобретение относится к области гидроакустики и может быть использовано для измерения параметров шумоизлучения движущегося подводного объекта (ПО). .

Изобретение относится к области гидроакустики, а именно к широкополосным стержневым пьезоэлектрическим преобразователям. .

Изобретение относится к области гидроакустики и может быть использовано для контроля шумности подводных объектов на сверхнизких частотах. .

Изобретение относится к области геофизики и прикладной гидроакустики и может быть использовано в мощных звуковых устройствах обработки продуктивных зон нефтяных и водяных скважин, а также для акустического профилирования верхнего слоя земной коры
Наверх