Рельсовая сталь

Изобретение относится к черной металлургии, а именно к производству стали, используемой для изготовления железнодорожных рельсов. Сталь содержит углерод, кремний, марганец, хром, молибден, ванадий, ниобий, бор, никель, алюминий, азот, кальций, железо и примеси при следующем соотношении компонентов, мас.%: углерод 0,85-1,30, кремний 0,10-1,20, марганец 0,20-1,60, хром 0,10-1,10, молибден 0,001-0,30, ванадий 0,03-0,15, ниобий 0,0001-0,005, бор 0,0003-0,002, никель 0,05-0,30, алюминий не более 0,005, азот 0,007-0,02, кальций 0,0005-0,005, железо и примеси остальное. В качестве примесей сталь содержит серу не более 0,015 мас.%, фосфор не более 0,020 мас.% и медь не более 0,20 мас.%. Повышается комплекс физико-механических свойств, износостойкость и контактно-усталостная прочность рельсов. 2 табл.

 

Изобретение относится к черной металлургии, в частности к производству стали для железнодорожных рельсов, обладающих улучшенным комплексом свойств, включающих повышенную износостойкость и контактно-усталостную прочность.

Известна сталь [1], содержащая (мас.%): 0,6-1,20 С; 0,1-1,2 Si; 0,4-1,4 Mn; 0,005-0,030 N; 0,005-0,050 Аl; 015-0,070 Mo; 0,1-1,0 Cr; 0,005-0,070 V; 0,01-1,50 Ni; 0,004-0,050 Nb; 0,01-1,50 Cu; 0,0001-0,0100 Ti; 0,002-0,050 S; 0,0001-0,0050 B; 0,0005-0,020 Mg; Fe - ост.

Существенными недостатками указанной стали являются низкая ударная вязкость и контактно-усталостная прочность рельсов, обусловленные высоким содержанием алюминия в стали, который приводит к загрязнению ее грубыми строчечными включениями глинозема.

Известная также рельсовая сталь [2], содержащая (мас.%): 0,83-0,95 С; 0,3-0,7 Si; 0,6-1,1 Mn; 0,08-0,15 V; не более 0,005 Аl; 0,012-0,020 N; 0,0005-0,005 Са; 0,05-0,5 Сr; 0,11-0,3 Мо; 0,05-0,3 Ni; 0,0005-0,005 Zr; 0,0005-0,005 РЗМ; не более 0,015 S; 0,020 Р; 0,020 Сu; Fe - ост.

Основным недостатком стали является недостаточная износостойкость рельсов, обусловленная сравнительно низким содержанием углерода, марганца, кремния, хрома и молибдена.

Известна выбранная в качестве прототипа рельсовая сталь [3], содержащая (мас.%): 0,85-1,20 С; 0,10-1,00 Si; 0,20-1,50 Mn; 0,50-1,00 Сr или 0,85-1,20 С; 0,40-1,00 Si; 0,20-0,40 Mn; 0,35-0,50 Сr, причем величина суммы показателей содержания Si/4+Mn/2+Cr составляет 0,8-1,8%; а также один или по меньшей мере два элемента, выбранных из группы, включающей Mo, V, Nb и В, примеси и Fe - ост.

Существенным недостатком данной стали является повышенная склонность к хрупкому разрушению и пониженная эксплуатационная стойкость.

Желаемым техническим результатом изобретения является повышение комплекса физико-механических свойств, износостойкости и контактно-усталостной прочности рельсов.

Для достижения этого сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, ниобий, бор и железо, отличается тем, что она дополнительно содержит никель, алюминий, азот, кальций при следующем соотношении компонентов (мас.%):

углерод 0,85-1,30
кремний 0,10-1,20
марганец 0,20-1,60
хром 0,10-1,10
молибден 0,001-0,30
ванадий 0,03-0,15
ниобий 0,0001-0,005
бор 0,0003-0,002
никель 0,05-0,30
алюминий не более0,005
азот 0,007-0,02
кальций 0,0005-0,005
железо и примеси остальное,

при этом количество примесей ограничено в следующем соотношении (мас.%):

сера не более 0,015
фосфор не более 0,020
медь не более 0,20

Заявляемый химический состав стали подобран исходя из следующих предпосылок.

Выбранное содержание углерода обеспечивает повышение предела текучести, временного сопротивления разрыву, твердости и износостойкости рельсовой стали. Переход к заэвтектоидным сталям приводит к уменьшению роста зерна аустенита по сравнению с доэвтектоидными сталями.

При содержании углерода более 1,3% значительно возрастает хрупкость рельсов.

Повышение содержания Si, Mn, Сr по сравнению с прототипом связано также с необходимостью повышения износостойкости заэвтектоидной стали при рабочем контакте колесо-рельс.

Повышение содержания кремния до 1,20% связано с необходимостью увеличения раскисленности стали при уменьшении содержания алюминия в ней, обеспечивающем повышение чистоты стали по включениям пластичных силикатов, которые снижают ударную вязкость.

Увеличение концентрации марганца до 1,60% способствует повышению прокаливаемости стали, уменьшает критическую скорость охлаждения.

Молибден в указанных пределах обеспечивает получение дисперсной закаленной структуры, увеличивает прочностные свойства, твердость, ударную вязкость и сопротивление износу. Введение молибдена усиливает действие алюминия, снижение содержания которого не приведет к уменьшению сопротивления хрупкому разрушению.

В целом выбранное соотношение Mn, Si, Сr, Мо, В в стали, содержащей 0,85-1,30% С, обеспечивает снижение температуры превращения аустенита и получение более дисперсной структуры троостита по сравнению с сорбитом закалки.

Введение никеля в заявляемых пределах обеспечивает повышение пластичности и ударной вязкости стали. Его содержание до 0,05% не оказывает положительного влияния на свойства стали, а при концентрации более 0,3% эта характеристика не превышает определяемых величин.

Совместное введение V, Nb, N в сталь приводит за счет образования дисперсных частиц карбонитридов ванадия и ниобия к повышению прочностных свойств и сопротивлению хрупкому разрушению. При концентрации ванадия менее 0,03%, ниобия менее 0,0001%, азота менее 0,007% не обеспечивается повышение выносливости стали. При увеличении содержания ванадия, ниобия и азота в стали более заявляемых пределов возрастает количество карбонитридов в ней, обеспечивающих нежелательное повышение прочностных свойств. При повышении азота более 0,02% возможны случаи пятнистой ликвации и "азотного кипения" (пузыри в стали).

Снижение содержания алюминия до 0,005% и модифицирование стали кальцием от 0,0005 до 0,005% обеспечивают получение высокочистого металла по включениям алюминатов, приводят к образованию глобулярных неметаллических включений, к уменьшению их размеров и количества. Однако введение кальция более 0,005% приводит к загрязнению ее глобулями больших размеров и удорожает производство стали. Кальций при концентрации менее 0,0005% практически не оказывает влияние на модифицирование включений.

Ограничение содержания меди, серы и фосфора выбрано с целью улучшения качества поверхности и повышения пластичности и вязкости стали. Кроме того, концентрация серы определяет красноломкость, фосфорахладноломкость стали.

Заявляемый химический состав рельсовой стали обеспечивает получение рельсов повышенной контактно-усталостной прочности и износостойкости при охлаждении их сжатым воздухом.

Серия опытных плавок была выплавлена в дуговых печах ДСП-100И7. Химический состав приведен в таблице 1. Металл разливали на МНЛЗ. Полученные заготовки нагревали и прокатывали по обычной технологии на рельсы типа Р65, которые подвергали дифференцированной закалке сжатым воздухом. Приведенные в таблице 2 данные показывают, что механические свойства, твердость рельсов из заявляемой стали значительно выше, чем рельсов из стали Э83Ф [4]. Повышение твердости и прочностных свойств рельсов увеличивает повышение их износостойкости и контактно-усталостной прочности.

Список источников, принятых во внимание

1. Патент JP 2004-076112 А, МПК С22С 38/00; 38/06; 38/5-1, 2004 г.

2. Патент RU 2259416 С2, МПК С22С 38/24, 38/28; 38/46; 38/50, 2005 г.

3. Патент RU 2139946 С1, МПК С21С С 21D 9/04; С22С 38/04, 1996 г.

4. ТУ 0921-125-2001 "Рельсы железнодорожные повышенной износостойкости и контактной выносливости".

Таблица 1
Химический состав стали
Состав Массовая доля элементов, %
С Мn Si V Аl N Са Nb Сr Мо Ni
1 0,85 1,20 1,10 0,03 0,005 0,012 0,0005 0,0005 0,60 0,005 0,0005
2 0,87 0,30 1,20 0,09 0,005 0,014 0,0008 0,0008 0,10 0,001 0,005
3 0,85 0,85 0,30 0,12 0,004 0,017 0,0020 0,0015 1,10 0,15 0,0007
4 0,88 1,00 0,60 0,14 0,005 0,015 0,0010 0,0016 0,80 0,20 0,0001
5 0,94 0,95 0,50 0,11 0,005 0,020 0,0030 0,003 0,30 0,26 0,004
6 0,95 1,10 0,69 0,15 0,005 0,018 0,0049 0,005 0,50 0,30 0,001
7 1,00 0,61 0,30 0,08 0,005 0,007 0,0006 0,0005 0,70 0,12 0,004
8 1,20 0,75 0,45 0,11 0,003 0,010 0,0015 0,0007 0,90 0,19 0,005
9 1,25 0,96 0,61 0,13 0,002 0,018 0,0034 0,003 0,50 0,20 0,0006
10 1,30 1,09 0,70 0,15 0,005 0,009 0,0051 0,005 1,00 0,30 0,001
ТУ-0921-125-2001 Сталь Э83Ф 0,78-0,88 0,75-1,05 0,25-0,45 0,03-0,15 не более 0,02 - - - ≤0,15 - ≤0,15

Таблица 2
Механические свойства дифференцированно-упрочненных рельсов
Вариант σт σв δ5 ψ Твердость
Н/мм2 % НВ10 НВ22 НВпкг
1 1030 1413 12 25 401 388 415
2 990 1352 12 33 388 363 388
3 990 1363 12 33 388 388 388
4 1029 1391 11 32 388 375 388
5 1039 1372 10 31 388 388 401
6 1049 1412 10 31 388 388 415
7 1060 1423 12 24 415 401 430
8 1080 1443 11 23 415 415 430
9 1090 1452 10 22 415 415 430
10 1090 1462 9 20 410 415 440
ТУ-0921-125-2001 Сталь Э83Ф 880 1274 7 26 ≥352 ≥341 ≥363
Примечание: НВпгк - твердость на поверхности катания головки рельса;
НВ10, НВ22 - твердость на расстоянии соответственно 10 и 22 мм.

Рельсовая сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, ниобий, бор, железо и примеси, отличающаяся тем, что она дополнительно содержит никель, алюминий, азот и кальций при следующем соотношении компонентов, мас.%:

углерод 0,85-1,30
кремний 0,10-1,20
марганец 0,20-1,60
хром 0,10-1,10
молибден 0,001-0,30
ванадий 0,03-0,15
ниобий 0,0001-0,005
бор 0,0003-0,002
никель 0,05-0,30
алюминий не более 0,005
азот 0,007-0,02
кальций 0,0005-0,005
железо и примеси остальное

при этом количество примесей ограничено в следующем соотношении, мас.%:
сера не более 0,015
фосфор не более 0,020
медь не более 0,20



 

Похожие патенты:

Изобретение относится к черной металлургии, в частности к производству стали для железнодорожных рельсов. .

Изобретение относится к черной металлургии, в частности к производству стали для железнодорожных рельсов. .

Сталь // 2364657
Изобретение относится к черной металлургии, в частности к производству низколегированной стали для строительных конструкций, работающих при отрицательных температурах.
Изобретение относится к области черной металлургии и касается составов сталей, используемых для изготовления инструмента холодного деформирования. .
Изобретение относится к области черной металлургии, а именно к составам сталей, которые могут быть использованы для изготовления инструмента холодного деформирования.
Изобретение относится к области металлургии, а именно к составам высокопрочной немагнитной коррозионно-стойкой композиционной стали, используемой в машиностроении, авиастроении, специальном судостроении, приборостроении и при создании высокоэффективной буровой техники.

Изобретение относится к металлургии, в частности к разработке составов легированных аустенитных коррозионно-стойких сталей для атомных энергетических установок с жидкометаллическим теплоносителем.

Изобретение относится к области металлургии и медицины, а именно к коррозионно-стойким хромоникельмолибденовым сталям, применяемым в ортопедической стоматологии для зубного протезирования.

Изобретение относится к черной металлургии, в частности к производству стали для железнодорожных рельсов. .

Изобретение относится к черной металлургии, в частности к производству стали для железнодорожных рельсов. .
Изобретение относится к области металлургии, а именно к составам сталей для изготовления пружин, работающих в воде, слабых растворах кислот и щелочей, нефтепродуктах.

Изобретение относится к металлургии, в частности к легированным конструкционным сталям, применяемым для изготовления изделий методом холодной объемной штамповки.
Изобретение относится к черной металлургии, а именно к производству высокопрочных цементируемых сталей для изготовления тяжелонагружаемых деталей в автомобильной промышленности, в частности шестерен коробок передач, деталей несущей системы тракторов и автомобилей большой грузоподъемности.
Изобретение относится к черной металлургии, в частности к производству борсодержащих сталей, применяемых для изготовления деталей в автомобильной промышленности, в том числе для изготовления деталей типа шестерен коробок передач, деталей несущей системы тракторов и автомобилей большой грузоподъемности.

Изобретение относится к черной металлургии, а именно к производству сталей, используемых при изготовлении горячекатаных и холоднокатаных листов высокой прочности для изготовления способом холодной деформации высоконагруженных деталей автомобилей, тракторов, сельскохозяйственных машин, строительных конструкций.
Сталь // 2361962
Изобретение относится к области металлургии, а именно к составам сталей, используемых в криогенной технике. .

Изобретение относится к металлургии, а именно к хромистой радиационностойкой стали, используемой для изготовления чехлов тепловыделяющих сборок (ТВС) ядерных реакторов на быстрых нейтронах, а также чехлов гильз системы управления и защиты нейтронных источников (СУЗ), оболочек тепловыделяющих элементов (твэлов) и других элементов конструкции активной зоны ядерного реактора.

Изобретение относится к области металлургии, в частности к сортовому прокату для изготовления зубчатых колес, валов, других ответственных деталей, работающих в условиях ударных нагрузок.

Изобретение относится к области металлургии, а именно к высокопрочной износостойкой стали и способу ее получения
Наверх