Способ термомеханической обработки титановых сплавов

Изобретение относится к цветной металлургии и может быть использовано в авиакосмической и ракетной технике для изготовления пилонов двигателя и силовых конструкций носовых обтекателей ракет, эксплуатируемых в условиях повышенных температур. Изобретение направлено на повышение предела прочности при повышенных температурах (σв300), предела длительной прочности (σ50ч300, σ100ч300) и уменьшение дисперсии механических свойств поперек, вдоль и по высоте титановых сплавов. Обработку титановых сплавов проводят в десять стадий с нагревом до температуры выше и ниже температуры полиморфного превращения и деформацией. На первых трех стадиях деформацию проводят в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки на каждом этапе. Деформацию на стадиях с четвертой по десятую осуществляют в один этап с изменением направления деформирования на 90° от двух до семи раз. После десятой стадии проводят старение при температуре

пп-320÷Тпп-520)°С с выдержкой от 2 до 10 часов. Перед старением проводят закалку при температуре

пп-120÷Тпп-230)°С с охлаждением в воде или на воздухе. Изобретение позволит повысить прочность на 15-20%, уменьшить дисперсию механических свойств в 3-4 раза, снизить массу деталей на 15-20% и повысить эксплуатационную надежность работы конструкций. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, используемых в авиакосмической и ракетной технике для изготовления пилонов двигателя и силовых конструкций носовых обтекателей ракет, эксплуатируемых в условиях повышенных температур.

Известен способ термомеханической обработки титановых сплавов, включающий:

- нагрев до температуры (1050-1200)°С (Тпп+120÷Тпп+270)°С, деформацию в процессе охлаждения до 850°С (Тпп-40)°С;

- нагрев до температуры (880-1050)°С (Тпп-50÷Тпп+120)°C; охлаждение в процессе деформации до температуры 750°С (Тпп-180)°С, где Тпп=920°С (Александров В.К., Аношкин Н.Ф., Белозеров А.П. Полуфабрикаты из титановых сплавов. М.: ОНТИ ВИЛС, 1996 г., с.371).

Недостатком известного способа является низкий уровень механических свойств сплавов, обработанных данным способом.

Известен также способ термомеханической обработки титановых сплавов, включающий нагрев в β-области выше температуры полиморфного превращения, деформацию в процессе охлаждения до температуры на (30-70)°С ниже температуры полиморфного превращения, охлаждение, повторный нагрев в двухфазной области, повторную деформацию в этой области в процессе охлаждения, повторное охлаждение, окончательный нагрев в двухфазной области, выдержку и охлаждение, отличающийся тем, что с целью повышения механических свойств деформацию проводят в β- и (α+β)-областях с одинаковой степенью, равной 40-60%, повторный нагрев осуществляют до температуры на 20-40°С ниже температуры полиморфного превращения, повторную деформацию проводят со степенью 25-35% при охлаждении до температуры на 100-130°С ниже температуры полиморфного превращения, повторное охлаждение после деформации осуществляют до температуры на 180-280°С ниже температуры полиморфного превращения; после чего дополнительно повторяют последний цикл нагрева и деформации в процессе охлаждения в тех же условиях, а охлаждение после деформации в этом цикле проводят до комнатной температуры; окончательный нагрев осуществляют до температуры на 100-300°С ниже температуры полиморфного превращения (а.с. СССР 1740487).

Недостатком известного способа является низкий уровень механических свойств сплавов, обработанных данным способом.

Наиболее близким аналогом, взятым за прототип, является способ термомеханической обработки титановых сплавов, включающий многократные нагревы до температуры выше и ниже температуры полиморфного превращения и деформацию в процессе охлаждения до температуры ниже температуры полиморфного превращения, выдержку и охлаждение, в котором термомеханическую обработку проводят в шесть стадий, при этом на первых пяти стадиях осуществляют:

- нагрев до температуры (Тпп+120÷Тпп+270)°С, деформацию со степенью (50-70)% при охлаждении до (Тпп-40÷Тпп-100)°С;

- нагрев до температуры (Тпп+60÷Тпп+160)°С, деформацию со степенью (40-60)% при охлаждении до (Tпп-100÷Tпп-180)°C;

- нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью (10-30)% при охлаждении до (Тпп-140÷Тпп-160)°С;

- нагрев до температуры (Тпп+20÷Тпп+50)°С, деформацию со степенью (40-60)% при охлаждении до (Тпп-110÷Тпп-130)°С;

- нагрев до температуры (Тпп+20÷Тпп+50)°С, деформацию со степенью (30-70)% при охлаждении до (Тпп-110÷Tпп-130)°C;

затем, на шестой стадии, проводят нагрев до температуры (Тпп-400÷Тпп-500)°С с выдержкой в течение (5-20) часов, где Тпп - температура полиморфного превращения (патент РФ №2219280).

Недостатками прототипа являются то, что титановые сплавы, обработанные этим способом, обладают пониженными механическими свойствами и повышенной дисперсией механических свойств при повышенных температурах.

Технической задачей изобретения является повышение предела прочности при повышенных температурах (σв300), предела длительной прочности (σ50ч300, σ100ч300) и уменьшение дисперсии механических свойств (поперек, вдоль, по высоте) титановых сплавов.

Поставленная техническая задача достигается тем, что предложен способ термомеханической обработки титановых сплавов, включающий многократные нагревы до температуры выше и ниже температуры полиморфного превращения и деформации, в которых термомеханическую обработку проводят в десять стадий, при этом:

на первой стадии осуществляют нагрев до температуры (Тпп+250÷Тпп+280)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на второй стадии - нагрев до температуры (Тпп+160÷Тпп+230)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на третьей стадии - нагрев до температуры (Тпп+70÷Тпп+150)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 15÷40% на каждом этапе деформации;

на четвертой стадии - нагрев до температуры (Тпп-10÷Тпп-30)°С, деформацию со степенью 20-45%;

на пятой стадии - нагрев до температуры (Тпп+60÷Тпп+120)°С, деформацию со степенью 25-70%;

на шестой стадии - нагрев до температуры (Тпп-10÷Тпп-30)°С, деформацию со степенью 15-40%;

на седьмой стадии - нагрев до температуры (Тпп+40÷Тпп+100)°С, деформацию со степенью 20-60%;

на восьмой стадии - нагрев до температуры (Tпп-10÷Тпп-30)°С, деформацию со степенью 15-40%;

на девятой стадии - нагрев до температуры (Тпп+20÷Тпп+80)°С, деформацию со степенью 20-55%;

на десятой стадии - нагрев до температуры (Тпп-10÷Тпп-40)°С, деформацию со степенью 15-50%, где Тпп - температура полного полиморфного превращения;

при этом деформацию на стадиях с четвертой по десятую осуществляют в один этап с изменением направления деформирования на 90° от двух до семи раз.

После десятой стадии может проводиться старение при температуре (Тпп-320÷Тпп-520)°С с выдержкой 2-10 часов, или перед старением может проводиться закалка при температуре (Тпп-120÷Тпп-230)°С с охлаждением в воде или на воздухе.

В процессе первых трех стадий обработки проводится всесторонняя ковка с изменением направления деформации, которая в отличие от ковки в одном направлении обеспечивает создание однородного химического состава и структурно-фазового состояния во всем объеме заготовки и формирования мелкозернистой β-структуры. При трех стадиях всесторонней ковки происходит диффузионная сварка под давлением границ различно ориентированных раковин и пустот. При последующих нагревах происходит диффузия повышенной концентрации примесей, образованных на границах сварки, в глубину металла, чем обеспечивается химическая однородность по примесям и легирующим элементам.

При последующих четвертой и пятой стадиях обработки проводится фазовая перекристаллизация, включающая деформацию в (α+β)-области на четвертой стадии и последующий нагрев в β-области с деформацией на пятой стадии. Фазовая перекристаллизация проводится второй (шестая и седьмая стадии) и третий (восьмая и девятая стадии) раз, при этом температура нагрева в β-области снижается от пятой к седьмой и девятой стадиям, что обеспечивает получение сверхмелкозернистой структуры.

На десятой стадии при деформациях в (α+β)-области измельчается пластинчатая структура внутри зерна, деформируется граница β-зерен, что формирует структуру, обеспечивающую получение высокого уровня механических свойств, особенно при повышенных температурах.

Проведение всех десяти стадий термомеханической обработки обеспечивает создание сплава с высоким уровнем механических свойств и уменьшенной дисперсией свойств при повышенных температурах.

Примеры осуществления

Были изготовлены образцы из титановых сплавов, например ВТ23 и ВТ43, обработанные предлагаемым способом термомеханической обработки (1-3) и способом-прототипом (4), которые были подвергнуты механическим испытаниям.

Пример 1

На первой стадии осуществляют нагрев до температуры (Тпп+250)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20% на каждом этапе деформации;

на второй стадии - нагрев до температуры (Тпп+160)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20% на каждом этапе деформации;

на третьей стадии - нагрев до температуры (Тпп+70)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 15% на каждом этапе деформации;

на четвертой стадии - нагрев до температуры (Тпп-10)°С, деформацию с изменением направления деформирования на 90° со степенью 20% (первое изменение направления);

на пятой стадии - нагрев до температуры (Тпп+60)°С, деформацию со степенью 25%;

на шестой стадии - нагрев до температуры (Тпп-10)°С, деформацию с изменением направления деформирования на 90° со степенью 15%(второе изменение направления);

на седьмой стадии - нагрев до температуры (Тпп+40)°С, деформацию со степенью 20%;

на восьмой стадии - нагрев до температуры (Тпп-10)°С, деформацию со степенью 15%;

на девятой стадии - нагрев до температуры (Тпп+20)°С, деформацию со степенью 20%;

на десятой стадии - нагрев до температуры (Тпп-10)°С, деформацию со степенью 15%.

При этом деформацию на стадиях с четвертой по десятую осуществляют в один этап с изменением направления деформирования на 90° на четвертой и шестой стадиях (два раза).

Пример 2

На первой стадии осуществляют нагрев до температуры (Тпп+280)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 50% на каждом этапе деформации;

на второй стадии - нагрев до температуры (Тпп+230)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 50% на каждом этапе деформации;

на третьей стадии - нагрев до температуры (Тпп+150)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 40% на каждом этапе деформации;

на четвертой стадии - нагрев до температуры (Тпп-30)°С, деформация с изменением направления деформирования на 90° со степенью 45% (первое изменение направления);

на пятой стадии - нагрев до температуры (Тпп+120)°С, деформация со степенью 70%;

на шестой стадии - нагрев до температуры (Тпп-30)°С, деформация с изменением направления деформирования на 90° со степенью 40% (второе изменение направления);

на седьмой стадии - нагрев до температуры (Тпп+100)°С, деформация со степенью 60%;

на восьмой стадии - нагрев до температуры (Тпп-30)°С, деформация с изменением направления деформирования на 90° со степенью 40% (третье изменение направления);

на девятой стадии - нагрев до температуры (Тпп+80)°С, деформация с изменением направления деформирования на 90° со степенью 55%(четвертое изменение направления);

на десятой стадии - нагрев до температуры (Тпп-40)°С, деформация со степенью 50%;

затем проводят старение при температуре (Тпп-420)°С с выдержкой 6 часов.

При этом деформацию на стадиях с четвертой по десятую осуществляют в один этап с изменением направления деформирования на 90° на четвертой, шестой, восьмой и девятой стадиях (4 раза).

Пример 3

На первой стадии - нагрев до температуры (Тпп+270)°С, деформация в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 35% на каждом этапе деформации;

на второй стадии - нагрев до температуры (Тпп+200)°С, деформация в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 40% на каждом этапе деформации;

на третьей стадии - нагрев до температуры (Тпп+100)°С, деформация в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе деформации;

на четвертой стадии - нагрев до температуры (Тпп-20)°С, деформация с изменением направления деформирования на 90° со степенью 30% (первое изменение направления);

на пятой стадии - нагрев до температуры (Тпп+90)°С, деформация с изменением направления деформирования на 90° со степенью 50% (второе изменение направления);

на шестой стадии - нагрев до температуры (Тпп-20)°С, деформация с изменением направления деформирования на 90° со степенью 30% (третье изменение направления);

на седьмой стадии - нагрев до температуры (Тпп+70)°С, деформация с изменением направления деформирования на 90° со степенью 40% (четвертое изменение направления);

на восьмой стадии - нагрев до температуры (Тпп-20)°С, деформация с изменением направления деформирования на 90° со степенью 25% (пятое изменение направления);

на девятой стадии - нагрев до температуры (Тпп+50)°С, деформация с изменением направления деформирования на 90° со степенью 35% (шестое изменение направления);

на десятой стадии - нагрев до температуры (Тпп-20)°С, деформация с изменением направления деформирования на 90° со степенью 30% (седьмое изменение направления);

затем проводят закалку при температуре (Тпп-170)°С (охлаждение в воде или на воздухе) и старение при температуре (Тпп-420)°С с выдержкой 6 часов.

При этом деформацию на стадиях с четвертой по десятую осуществляют в один этап с изменением направления деформирования на 90° на четвертой, пятой, шестой, седьмой, восьмой, девятой и десятой стадиях (7 раз).

В таблице приведены механические свойства образцов из титановых сплавов, обработанных по предлагаемому способу (1-3) и способу-прототипу (4).

Предлагаемый способ термомеханической обработки титановых сплавов позволит повысить предел прочности при 300°С (σв300), предел длительной прочности (σ50ч300, σ100ч300) и уменьшит дисперсию механических свойств (поперек, вдоль, по высоте) изделий из титановых сплавов.

Использование предлагаемого способа термомеханической обработки позволит повысить прочность на 15-20%, уменьшить дисперсию механических свойств в 3-4 раза, снизить массу деталей на 15-20% и повысить эксплуатационную надежность работы конструкций.

Таблица
ВТ23 (Тпп=920°С)
поперек вдоль по высоте
σв300 σ50ч300 σ100ч300 σв300 σ50ч300 σ100ч300 σв300 σ50ч300 σ100ч300
1 1250 1140 1100 1247 1137 1097 1252 1142 1102
2 1255 1150 1115 1252 1141 1102 1257 1148 1107
3 1253 1154 1105 1250 1139 1101 1254 1152 1106
4 1080 902 870 1045 940 810 1087 961 924
ВТ43 (Тпп=910°С)
1 1290 1195 1162 1252 1170 1165 1259 1159 1117
2 1302 1207 1178 1258 1175 1174 1272 1172 1103
3 1300 1202 1171 1256 1168 1162 1267 1165 1156
4 1085 931 907 1069 963 877 1120 982 926

1. Способ термомеханической обработки титановых сплавов, включающий многократные нагревы до температуры выше и ниже температуры полиморфного превращения и деформации, отличающийся тем, что термомеханическую обработку проводят в десять стадий, при этом на первой стадии осуществляют нагрев до температуры (Тпп+250÷Тпп+280)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20-50% на каждом этапе деформации, на второй стадии - нагрев до температуры
пп+160÷Тпп+230)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20-50% на каждом этапе деформации, на третьей стадии - нагрев до температуры (Тпп+70÷Тпп+150)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 15-40% на каждом этапе деформации, на четвертой стадии - нагрев до температуры (Тпп-10÷Тпп-30)°С, деформацию со степенью 20-45%, на пятой стадии - нагрев до температуры (Тпп+60÷Тпп+120)°С, деформацию со степенью 25-70%, на шестой стадии - нагрев до температуры (Тпп-10÷Тпп-30)°С, деформацию со степенью 15-40%, на седьмой стадии - нагрев до температуры (Тпп+40÷Тпп+100)°С, деформацию со степенью 20-60%, на восьмой стадии - нагрев до температуры (Тпп-10÷Тпп-30)°С, деформацию со степенью 15-40%, на девятой стадии - нагрев до температуры (Тпп+20÷Тпп+80)°С, деформацию со степенью 20-55%, на десятой стадии - нагрев до температуры (Тпп-10÷Тпп-40)°С, деформацию со степенью 15-50%, где Тпп - температура полного полиморфного превращения, при этом деформацию на стадиях с четвертой по десятую осуществляют в один этап с изменением направления деформации на 90° от двух до семи раз.

2. Способ по п.1, отличающийся тем, что после десятой стадии проводят старение при температуре (Тпп-320÷Тпп-520)°С с выдержкой 2-10 ч.

3. Способ по п.1 или 2, отличающийся тем, что перед старением проводят закалку при температуре (Tпп-120÷Тпп-230)°C, охлаждение в воде или на воздухе.



 

Похожие патенты:

Изобретение относится к металлургии, в частности к способам получения штамповок из титановых сплавов. .
Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано в авиакосмической технике.
Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано в авиакосмической и ракетной технике.
Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано в космической и ракетной технике для создания конструкций, работающих при повышенных температурах.

Изобретение относится к деформационной обработке сплавов с эффектом памяти формы на основе интерметаллического соединения TiNi для эффективного получения наноструктурных и ультрамелкозернистых полуфабрикатов в виде проволоки, листа, полосы и фольги тонкого и супертонкого сечения с сохранением или повышением служебных свойств и может быть использовано в металлургии, машиностроении и медицине.
Изобретение относится к деформационно-термической обработке сплавов с эффектом памяти формы на основе интерметаллического соединения титан-никель и может быть использовано в металлургии, машиностроении и медицине.
Изобретение относится к деформационно-термической обработке титановых сплавов с целью формирования ультрамелкозернистой структуры. .
Изобретение относится к металлургии и может быть использовано в авиакосмической и ракетной технике для изготовления баллонов, корпусов, обтекателей, обшивки, оболочек, днищ.

Изобретение относится к обработке металлов давлением и предназначено для правки листового проката крип-отжигом, преимущественно крупногабаритных листов и плит из титановых сплавов.
Изобретение относится к цветной металлургии и может быть использовано в авиакосмической и ракетной технике для создания деталей и узлов шасси самолетов и стыковочных узлов ракет, работающих в условиях циклических нагрузок

Изобретение относится к обработке металлов давлением, в частности к термомеханической обработке двухфазных титановых сплавов

Изобретение относится к обработке давлением и может быть использовано в авиационной и энергетической промышленности при изготовлении изделий ответственного назначения для газотурбинных двигателей, газотурбинных установок и самолетных конструкций из титановых сплавов

Изобретение относится к области обработки металлов давлением, а именно к способу изготовления тонких листов из высокопрочного титанового сплава Ti-6Al-4V методом рулонной прокатки

Изобретение относится к способу изготовления особо тонких листов из высокопрочных титановых сплавов методом пакетной прокатки

Изобретение относится к области металлургии, в частности к прокатному производству, и предназначено для изготовления плоского профиля из циркониевых сплавов, используемого в качестве конструкционного материала в активных зонах атомных реакторов, в химической и нефтегазовой промышленности
Изобретение относится к области обработки металлов давлением и может быть использовано, например, в авиационной промышленности при изготовлении деталей из титановых сплавов, преимущественно лопаток

Изобретение относится к области наноструктурных материалов с ультрамелкозернистой структурой и повышенными механическими свойствами, которые могут быть использованы для изготовления медицинских имплантатов
Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий из титановых сплавов, и может быть использовано в авиакосмической и ракетной технике для изготовления болтов, шпилек и других крепежных деталей

Изобретение относится к обработке металлов давлением и может быть использовано при изготовления изделий из полуфабрикатов, полученных термомеханической обработкой, обеспечивающей повышение физико-механических свойств
Наверх